Fur in Magnetospirillum gryphiswaldense influences magnetosomes formation and directly regulates the genes involved in iron and oxygen metabolism
- PMID: 22238623
- PMCID: PMC3251581
- DOI: 10.1371/journal.pone.0029572
Fur in Magnetospirillum gryphiswaldense influences magnetosomes formation and directly regulates the genes involved in iron and oxygen metabolism
Abstract
Magnetospirillum gryphiswaldense strain MSR-1 has the unique capability of taking up large amounts of iron and synthesizing magnetosomes (intracellular magnetic particles composed of Fe(3)O(4)). The unusual high iron content of MSR-1 makes it a useful model for studying biological mechanisms of iron uptake and homeostasis. The ferric uptake regulator (Fur) protein plays a key role in maintaining iron homeostasis in many bacteria. We identified and characterized a fur-homologous gene (MGR_1314) in MSR-1. MGR_1314 was able to complement a fur mutant of E. coli in iron-responsive manner in vivo. We constructed a fur mutant strain of MSR-1. In comparison to wild-type MSR-1, the mutant strain had lower magnetosome formation, and was more sensitive to hydrogen peroxide and streptonigrin, indicating higher intracellular free iron content. Quantitative real-time RT-PCR and chromatin immunoprecipitation analyses indicated that Fur protein directly regulates expression of several key genes involved in iron transport and oxygen metabolism, in addition it also functions in magnetosome formation in M. gryphiswaldense.
Conflict of interest statement
Figures





Similar articles
-
Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense.J Bacteriol. 2010 Aug;192(16):4192-204. doi: 10.1128/JB.00319-10. Epub 2010 Jun 18. J Bacteriol. 2010. PMID: 20562310 Free PMC article.
-
Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps control the iron/oxygen balance, oxidative stress tolerance, and magnetosome formation.Appl Environ Microbiol. 2015 Dec;81(23):8044-53. doi: 10.1128/AEM.02585-15. Epub 2015 Sep 18. Appl Environ Microbiol. 2015. PMID: 26386052 Free PMC article.
-
Expression patterns of key iron and oxygen metabolism genes during magnetosome formation in Magnetospirillum gryphiswaldense MSR-1.FEMS Microbiol Lett. 2013 Oct;347(2):163-72. doi: 10.1111/1574-6968.12234. Epub 2013 Sep 6. FEMS Microbiol Lett. 2013. PMID: 23937222
-
Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense.Arch Microbiol. 2004 Jan;181(1):1-7. doi: 10.1007/s00203-003-0631-7. Epub 2003 Dec 11. Arch Microbiol. 2004. PMID: 14668979 Review.
-
Magnetic genes: Studying the genetics of biomineralization in magnetotactic bacteria.PLoS Genet. 2020 Feb 13;16(2):e1008499. doi: 10.1371/journal.pgen.1008499. eCollection 2020 Feb. PLoS Genet. 2020. PMID: 32053597 Free PMC article. Review.
Cited by
-
Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator.Nat Commun. 2015 Jul 2;6:7642. doi: 10.1038/ncomms8642. Nat Commun. 2015. PMID: 26134419 Free PMC article.
-
The magnetosome model: insights into the mechanisms of bacterial biomineralization.Front Microbiol. 2013 Nov 26;4:352. doi: 10.3389/fmicb.2013.00352. Front Microbiol. 2013. PMID: 24324464 Free PMC article. Review.
-
Dissociation between Iron and Heme Biosyntheses Is Largely Accountable for Respiration Defects of Shewanella oneidensis fur Mutants.Appl Environ Microbiol. 2018 Apr 2;84(8):e00039-18. doi: 10.1128/AEM.00039-18. Print 2018 Apr 15. Appl Environ Microbiol. 2018. PMID: 29427425 Free PMC article.
-
Effect of Magnetospirillum gryphiswaldense on serum iron levels in mice.Iran J Microbiol. 2012 Sep;4(3):160-3. Iran J Microbiol. 2012. PMID: 23066493 Free PMC article.
-
Novel Protein Mg2046 Regulates Magnetosome Synthesis in Magnetospirillum gryphiswaldense MSR-1 by Modulating a Proper Redox Status.Front Microbiol. 2019 Jun 26;10:1478. doi: 10.3389/fmicb.2019.01478. eCollection 2019. Front Microbiol. 2019. PMID: 31297108 Free PMC article.
References
-
- Braun V, Hantke K, Koster W. Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst. 1998;35:67–145. - PubMed
-
- Keyer K, Imlay JA. Superoxide accelerates DNA damage by elevating free- iron levels. Proc Natl Acad Sci U S A. 1996;93:13635–13640. doi: 10.1073/pnas.93.24.13635. - DOI - PMC - PubMed
-
- Woodmansee AN, Imlay JA. Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem. 2002;277:34055–34066. doi: 10.1074/jbc.M203977200. - DOI - PubMed
-
- Escolar L, Perez-Martin J, de Lorenzo V. Binding of the fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J Mol Biol. 1998;283:537–547. doi: 10.1006/jmbi.1998.2119. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases