Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb 1;134(4):1986-9.
doi: 10.1021/ja2108799. Epub 2012 Jan 20.

Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts

Affiliations

Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts

Yihong Chen et al. J Am Chem Soc. .

Abstract

The importance of tin oxide (SnO(x)) to the efficiency of CO(2) reduction on Sn was evaluated by comparing the activity of Sn electrodes that had been subjected to different pre-electrolysis treatments. In aqueous NaHCO(3) solution saturated with CO(2), a Sn electrode with a native SnO(x) layer exhibited potential-dependent CO(2) reduction activity consistent with previously reported activity. In contrast, an electrode etched to expose fresh Sn(0) surface exhibited higher overall current densities but almost exclusive H(2) evolution over the entire 0.5 V range of potentials examined. Subsequently, a thin-film catalyst was prepared by simultaneous electrodeposition of Sn(0) and SnO(x) on a Ti electrode. This catalyst exhibited up to 8-fold higher partial current density and 4-fold higher faradaic efficiency for CO(2) reduction than a Sn electrode with a native SnO(x) layer. Our results implicate the participation of SnO(x) in the CO(2) reduction pathway on Sn electrodes and suggest that metal/metal oxide composite materials are promising catalysts for sustainable fuel synthesis.

PubMed Disclaimer

Publication types

LinkOut - more resources