Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May;10(3):347-60.
doi: 10.2174/157016112799959378.

Tissue engineering a small diameter vessel substitute: engineering constructs with select biomaterials and cells

Affiliations
Review

Tissue engineering a small diameter vessel substitute: engineering constructs with select biomaterials and cells

Joanne E McBane et al. Curr Vasc Pharmacol. 2012 May.

Abstract

Cardiovascular disease (CVD) is a leading cause of death and hospitalization worldwide. The need for small caliber vessels ( < 6mm) to treat CVD patients has grown; however the availability of autologous vessels in cardiac and peripheral bypass candidates is limited. The search for an alternative vessel source is widespread with both natural and synthetic tissue engineered materials being investigated as scaffolds. Despite decades of exhaustive studies with decellularized extracellular matrices (ECM) and synthetic graft materials, the field remains in search of a commercially viable biomaterial construct substitute. While the previous materials have been assessed by evaluating their compatibility with fibroblasts, smooth muscle cells and endothelial cells, current materials are being conceived based on their interactions with stem cells, progenitor cells and monocytes, as the latter may hold the key to repair and regeneration. The graft's ability to recruit and maintain these cells has become a major research focus. The successful tissue engineering of a small caliber vessel graft requires the use of optimal material chemistry and biological function to promote cell recruitment into the graft while maintaining each functional phenotype during vessel tissue maturation. The discussion of these significant research challenges constitutes the focus of this review.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources