Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan 13:6:3.
doi: 10.1186/1752-153X-6-3.

Cleavage of pyrene-stabilized RNA bulge loops by trans-(±)-cyclohexane-1,2-diamine

Affiliations

Cleavage of pyrene-stabilized RNA bulge loops by trans-(±)-cyclohexane-1,2-diamine

Sejal Patel et al. Chem Cent J. .

Abstract

Chemical agents that cleave HIV genome can be potentially used for anti-HIV therapy. In this report, the cleavage of the upper stem-loop region of HIV-1 TAR RNA was studied in a variety of buffers containing organic catalysts. trans-(±)-Cyclohexane-1,2-diamine was found to cleave the RNA with the highest activity (31%, 37°C, 18 h). Cleavage of the RNA in trans-(±)-cyclohexane-1,2-diamine buffer was also studied when the RNA was hybridized with complementary DNAs. A pyrene-modified C3 spacer was incorporated to the DNA strand to facilitate the formation of a RNA bulge loop in the RNA/DNA duplex. In contrast, unmodified DNAs cannot efficiently generate RNA bulge loops, regardless of the DNA sequences. The results showed that the pyrene-stablized RNA bulge loops were efficiently and site-specifically cleaved by trans-(±)-cyclohexane-1,2-diamine.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Oligonucleotide sequences and structure. (a) Oligonucleotide sequences and major cleavage sites. Arrow indicates the major cleavage sites when the RNA or RNA/DNA duplex was treated with trans-(±)-cyclohexane-1,2-diamine. The cleavage of 1/3, 1/4, 1/5, and 1/6 were not tested due to incomplete hybridization. (b) Chemical modifications of C3-spacer.
Figure 2
Figure 2
Cleavage of RNA 1 in buffers containing 20 mM NaCl, 1 mM Tris-EDTA (pH 8.0), and different organic catalysts (0.5 M, pH 8.0). Lane 1, no catalyst. Lane 2, trans-(±)-cyclohexane-1,2-diamine. Lane 3, glycine, Lane 4, propane-1,3-diamine. Lane 5, ethylenediamine. Lane 6, imidazole. Overall cleavage: Lane 1, 0%. Lane 2, 31%. Lane 3, 0%. Lane 4, 5%. Lane 5, 24%. Lane 6, < 1%.
Scheme 1
Scheme 1
Synthesis of the phosphoramidite of the PyC3 spacer. Regents and conditions: (a) p-anisaldehyde, TsOH, CH2Cl2, 12 h, 83%. (b) NaH, 1-bromomethylpyrene, THF/toluene, 48 h, 77%. (c) TsOH, MeOH/CH2Cl2, 30 h, 30%. (d) Dimethoxytrityl chloride, triethylamine, DMAP, CH2Cl2, 12 h, 65%. (e) N, N'-diisopropyl 2-cyanoethyl phosphoramidic chloride, N, N'-diisopropylethylamine, CH2Cl2, 2 h, 100%.
Figure 3
Figure 3
Cleavage of DNA/RNA duplexes in trans-(±)-cyclohexane-1,2-diamine (0.5 M), 20 mM NaCl, and 1 mM Tris-EDTA (37°C, pH 8.0, 18 h). Lane 1, RNA 1 in the absence of the catalyst. Lane 2, RNA 1 in the presence of the catalyst. Lane 3, duplex 1/2, Lane 4, duplex 1/7, Lane 5, duplex 1/8.

References

    1. Foster AE, Altman S. External guide sequences for an RNA enzyme. Science. 1990;249:783–786. doi: 10.1126/science.1697102. - DOI - PubMed
    1. Lewin AS, Hauswirth WW. Ribozyme gene therapy: applications for molecular medicine. Trends Mol Med. 2001;7:221–228. doi: 10.1016/S1471-4914(01)01965-7. - DOI - PubMed
    1. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;441:494–498. - PubMed
    1. Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009;475:426–433. - PMC - PubMed
    1. Morrow JR, Iranzo O. Synthetic metallonucleases for RNA cleavage. Curr Opin Chem Biol. 2004;8:192–200. doi: 10.1016/j.cbpa.2004.02.006. - DOI - PubMed

LinkOut - more resources