Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb 1;215(Pt 3):442-53.
doi: 10.1242/jeb.058867.

The correlation between locomotor performance and hindlimb kinematics during burst locomotion in the Florida scrub lizard, Sceloporus woodi

Affiliations

The correlation between locomotor performance and hindlimb kinematics during burst locomotion in the Florida scrub lizard, Sceloporus woodi

Eric J McElroy et al. J Exp Biol. .

Erratum in

  • J Exp Biol. 2013 Oct 15;216(Pt 20):3946

Abstract

Burst locomotion is thought to be closely linked to an organism's ability to survive and reproduce. During the burst, animals start from a standstill and then rapidly accelerate to near-maximum running speeds. Many previous studies have described the functional predictors of maximum running speed; however, only recently has work emerged that describes the morphological, functional and biomechanical underpinnings of acceleration capacity. Herein we present data on the three-dimensional hindlimb kinematics during burst locomotion, and the relationship between burst locomotor kinematics and locomotor performance in a small terrestrial lizard (Sceloporus woodi). We focus only on stance phase joint angular kinematics. Sceloporus woodi exhibited considerable variation in hindlimb kinematics and performance across the first three strides of burst locomotion. Stride 1 was defined by larger joint angular excursions at the knee and ankle; by stride 3, the knee and ankle showed smaller joint angular excursions. The hip swept through similar arcs across all strides, with most of the motion caused by femoral retraction and rotation. Metatarsophalangeal (MTP) kinematics exhibited smaller maximum angles in stride 1 compared with strides 2 and 3. The significant correlations between angular kinematics and locomotor performance were different across the first three strides. For stride 1, MTP kinematics predicted final maximum running speed; this correlation is likely explained by a correlation between stride 1 MTP kinematics and stride 2 acceleration performance. For stride 3, several aspects of joint kinematics at each joint predicted maximum running speed. Overall, S. woodi exhibits markedly different kinematics, performance and kinematics-performance correlations across the first three strides. This finding suggests that future studies of burst locomotion and acceleration performance should perform analyses on a stride-by-stride basis and avoid combining data from different strides across the burst locomotor event. Finally, the kinematics-performance correlations observed in S. woodi were quite different from those described for other species, suggesting that there is not a single kinematic pattern that is optimal for high burst performance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources