Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;25(6):852-8.
doi: 10.1002/nbm.1801. Epub 2012 Jan 16.

Measuring changes in muscle stiffness after eccentric exercise using elastography

Affiliations

Measuring changes in muscle stiffness after eccentric exercise using elastography

M A Green et al. NMR Biomed. 2012 Jun.

Abstract

Muscle stiffness has been reported to increase following eccentric muscle exercise, but to date only indirect methods have been used to measure it. This study aimed to use Magnetic Resonance Elastography (MRE), a noninvasive imaging technique, to assess the time-course of passive elasticity changes in the medial gastrocnemius and soleus muscles before and after a bout of eccentric exercise. Shear storage modulus (G') and loss modulus (G'') measurements were made in eight healthy subjects for both muscles in vivo before, one hour after, 48 hours after and 1 week after eccentric exercise. The results show a 21% increase in medial gastrocnemius storage modulus following eccentric exercise with a peak occurring ~48 hours after exercise (before exercise 1.15 ± 0.23 kPa, 48 hours after 1.38 ± 0.27 kPa). No significant changes in soleus muscle storage modulus were measured for the exercise protocol used in this study, and no significant changes in loss modulus were observed. This study provides the first direct measurements in skeletal muscle before and after eccentric exercise damage and suggests that MRE can be used to detect the time course of changes to muscle properties.

PubMed Disclaimer

Publication types

LinkOut - more resources