Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Dec;2(12):1322-8.
doi: 10.18632/oncotarget.413.

AMPK in BCR-ABL expressing leukemias. Regulatory effects and therapeutic implications

Affiliations
Review

AMPK in BCR-ABL expressing leukemias. Regulatory effects and therapeutic implications

Eliza Vakana et al. Oncotarget. 2011 Dec.

Abstract

The abnormal BCR-ABL oncoprotein is a constitutively active tyrosine kinase driving aberrant proliferation of transformed hematopoietic cells. BCR-ABL regulates activation of many mitogenic and pro-survival pathways, including the PI 3'K/AKT/mTOR pathway that controls various effectors and regulates initiation of mRNA translation in mammalian cells. Although tyrosine kinase inhibitors (TKIs) that target the ABL kinase domain have remarkable clinical activity and have dramatically changed the natural history of Ph+ leukemias, resistance to these agents also develops via a wide range of mechanisms. Efforts to target the PI3'K/AKT/mTOR signaling pathway using kinase inhibitors have been the focus of extensive ongoing investigations by several research groups. Here we review the effects of activation of the AMPK kinase, which regulates downstream targeting and inhibition of mTOR. The potential for future clinical-translational applications of AMPK activators such as AICAR, metformin and resveratrol for the treatment of chronic myelogenous leukemia (CML) and Ph+ acute lymphoblastic leukemia (ALL) are discussed.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Different target points of AMPK and mTOR pathways in BCR-ABL transformed cells and known pharmacological agents that can be used to target them

Similar articles

Cited by

References

    1. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–93. - PubMed
    1. Sawyers CL. Chronic myeloid leukemia. N Engl J Med. 1999;340:1330–40. - PubMed
    1. Lugo TC, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247:1079–82. - PubMed
    1. Platanias LC. Mechanisms of BCR-ABL leukemogenesis and novel targets for the treatment of chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Leuk Lymphoma. 2011;52:2–3. - PubMed
    1. Redig AJ, Vakana E, Platanias LC. Regulation of mammalian target of rapamycin and mitogen activated protein kinase pathways by BCR-ABL. Leuk Lymphoma. 2011;52:45–53. - PubMed

MeSH terms