Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(1):e29883.
doi: 10.1371/journal.pone.0029883. Epub 2012 Jan 10.

A multi-cohort study of polymorphisms in the GH/IGF axis and physical capability: the HALCyon programme

Collaborators, Affiliations

A multi-cohort study of polymorphisms in the GH/IGF axis and physical capability: the HALCyon programme

Tamuno Alfred et al. PLoS One. 2012.

Abstract

Background: Low muscle mass and function have been associated with poorer indicators of physical capability in older people, which are in-turn associated with increased mortality rates. The growth hormone/insulin-like growth factor (GH/IGF) axis is involved in muscle function and genetic variants in genes in the axis may influence measures of physical capability.

Methods: As part of the Healthy Ageing across the Life Course (HALCyon) programme, men and women from seven UK cohorts aged between 52 and 90 years old were genotyped for six polymorphisms: rs35767 (IGF1), rs7127900 (IGF2), rs2854744 (IGFBP3), rs2943641 (IRS1), rs2665802 (GH1) and the exon-3 deletion of GHR. The polymorphisms have previously been robustly associated with age-related traits or are potentially functional. Meta-analysis was used to pool within-study genotypic effects of the associations between the polymorphisms and four measures of physical capability: grip strength, timed walk or get up and go, chair rises and standing balance.

Results: Few important associations were observed among the several tests. We found evidence that rs2665802 in GH1 was associated with inability to balance for 5 s (pooled odds ratio per minor allele = 0.90, 95% CI: 0.82-0.98, p-value = 0.01, n = 10,748), after adjusting for age and sex. We found no evidence for other associations between the polymorphisms and physical capability traits.

Conclusion: Our findings do not provide evidence for a substantial influence of these common polymorphisms in the GH/IGF axis on objectively measured physical capability levels in older adults.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Pooled Results of Associations between Genotypes and Measures of Anthropometry.
Adjusted for age and sex. Models used: rs35767 (IGF1)- (C/T+T/T) vs. C/C; rs7127900 (IGF2)- (C/T+T/T) vs. C/C; rs2854744 (IGFBP3- per minor (A) allele; rs2943641 (IRS1)- per minor (T) allele; rs2665802 (GH1)- per minor (T) allele; d3GHR- (fl/d3+d3/d3) vs. fl/fl. fl: full length; d3: exon-3 deletion.
Figure 2
Figure 2. Pooled Results of Associations between Genotypes and Grip Strength, TGUG and Chair Rises.
Adjusted for age and sex. Timed chair rises on reciprocal of time taken in sec ×100. Models used: rs35767 (IGF1)- (C/T+T/T) vs. C/C; rs7127900 (IGF2)- (C/T+T/T) vs. C/C; rs2854744 (IGFBP3- per minor (A) allele; rs2943641 (IRS1)- per minor (T) allele; rs2665802 (GH1)- per minor (T) allele; d3GHR- (fl/d3+d3/d3) vs. fl/fl. fl: full length; d3: exon-3 deletion.
Figure 3
Figure 3. Pooled Results of Associations between Genotypes and Poor Balance.
Adjusted for age and sex. Poor balance defined as inability to complete the Flamingo test for 5 s in Boyd Orr, HAS, HCS, NSHD and CaPS, and 5 s of the tandem test in ELSA. Models used: rs35767 (IGF1)- (C/T+T/T) vs. C/C; rs7127900 (IGF2)- (C/T+T/T) vs. C/C; rs2854744 (IGFBP3- per minor (A) allele; rs2943641 (IRS1)- per minor (T) allele; rs2665802 (GH1)- per minor (T) allele; d3GHR- (fl/d3+d3/d3) vs. fl/fl. fl: full length; d3: exon-3 deletion.

References

    1. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–763. - PubMed
    1. Janssen I. Influence of sarcopenia on the development of physical disability: the Cardiovascular Health Study. J Am Geriatr Soc. 2006;54:56–62. doi: 10.1111/j.1532-5415.2005.00540.x. - DOI - PubMed
    1. Abellan van Kan G. Epidemiology and consequences of sarcopenia. J Nutr Health Aging. 2009;13:708–712. - PubMed
    1. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95:1851–1860. doi: 10.1152/japplphysiol.00246.2003. - DOI - PubMed
    1. Szulc P, Munoz F, Marchand F, Chapurlat R, Delmas PD. Rapid loss of appendicular skeletal muscle mass is associated with higher all-cause mortality in older men: the prospective MINOS study. Am J Clin Nutr. 2010;91:1227–1236. doi: 10.3945/ajcn.2009.28256. - DOI - PubMed

Publication types

MeSH terms

Substances