Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan 15;3(1):1-6.
doi: 10.4239/wjd.v3.i1.1.

Renal hyperfiltration related to diabetes mellitus and obesity in human disease

Affiliations

Renal hyperfiltration related to diabetes mellitus and obesity in human disease

Alexa N Sasson et al. World J Diabetes. .

Abstract

High intraglomerular pressure is associated with renal hyperfiltration, leading to the initiation and progression of kidney disease in experimental models of diabetes mellitus (DM). In humans, hyperfiltration is observed in patients with type 1 and type 2 DM, and is also seen in patients with pre-diabetic conditions, such as the metabolic syndrome. From a mechanistic perspective, both vascular and tubular factors likely contribute to the pathogenesis of hyperfiltration. Until now, human studies have primarily focused on the use of medications that inhibit the renin angiotensin system to reduce efferent vasoconstriction and thereby improve hyperfiltration. More recent advances in the development of investigational adenosine antagonists and inhibitors of sodium glucose co-transport may help to elucidate tubular factors that contribute to afferent vasodilatation. In this review, we summarize available data from experimental and human studies of type 1 and type 2 DM and obesity to provide an overview of factors that contribute to the hyperfiltration state. We have focused on the renin angiotensin system, cyclooxygenase-2 system, nitric oxide, protein kinase C and endothelin as vascular determinants of hyperfiltration. We also discuss relevant tubular factors, since experimental models have suggested that inhibition of sodium-glucose cotransport may be renoprotective.

Keywords: Diabetes mellitus; Glomerular filtration rate; Hyperfiltration; Metabolic syndrome.

PubMed Disclaimer

References

    1. Anderson S, Jung FF, Ingelfinger JR. Renal renin-angiotensin system in diabetes: functional, immunohistochemical, and molecular biological correlations. Am J Physiol. 1993;265:F477–F486. - PubMed
    1. Craven PA, Caines MA, DeRubertis FR. Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes. Metabolism. 1987;36:95–103. - PubMed
    1. Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981;19:410–415. - PubMed
    1. Zatz R, Meyer TW, Rennke HG, Brenner BM. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci USA. 1985;82:5963–5967. - PMC - PubMed
    1. Vallon V, Richter K, Blantz RC, Thomson S, Osswald H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol. 1999;10:2569–2576. - PubMed