Design of a wearable physical activity monitoring system using mobile phones and accelerometers
- PMID: 22255127
- PMCID: PMC6167937
- DOI: 10.1109/IEMBS.2011.6090611
Design of a wearable physical activity monitoring system using mobile phones and accelerometers
Abstract
This paper describes the motivation for, and overarching design of, an open-source hardware and software system to enable population-scale, longitudinal measurement of physical activity and sedentary behavior using common mobile phones. The "Wockets" data collection system permits researchers to collect raw motion data from participants who wear multiple small, comfortable sensors for 24 hours per day, including during sleep, and monitor data collection remotely.
Figures
Similar articles
-
Understanding energy consumption of sensor enabled applications on mobile phones.Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6885-8. doi: 10.1109/IEMBS.2009.5333609. Annu Int Conf IEEE Eng Med Biol Soc. 2009. PMID: 19964448
-
Investigating children's physical activity and sedentary behavior using ecological momentary assessment with mobile phones.Obesity (Silver Spring). 2011 Jun;19(6):1205-12. doi: 10.1038/oby.2010.302. Epub 2010 Dec 16. Obesity (Silver Spring). 2011. PMID: 21164502 Clinical Trial.
-
Using reality mining to improve public health and medicine.Stud Health Technol Inform. 2009;149:93-102. Stud Health Technol Inform. 2009. PMID: 19745474
-
A survey of online activity recognition using mobile phones.Sensors (Basel). 2015 Jan 19;15(1):2059-85. doi: 10.3390/s150102059. Sensors (Basel). 2015. PMID: 25608213 Free PMC article. Review.
-
A review of accelerometry-based wearable motion detectors for physical activity monitoring.Sensors (Basel). 2010;10(8):7772-88. doi: 10.3390/s100807772. Epub 2010 Aug 20. Sensors (Basel). 2010. PMID: 22163626 Free PMC article. Review.
Cited by
-
A New Frontier: Integrating Behavioral and Digital Technology to Promote Health Behavior.Behav Anal. 2014 Aug 23;38(1):19-49. doi: 10.1007/s40614-014-0017-y. eCollection 2015 May. Behav Anal. 2014. PMID: 27347477 Free PMC article.
-
Estimating activity and sedentary behavior from an accelerometer on the hip or wrist.Med Sci Sports Exerc. 2013 May;45(5):964-75. doi: 10.1249/MSS.0b013e31827f0d9c. Med Sci Sports Exerc. 2013. PMID: 23247702 Free PMC article.
-
Activity Recognition in Youth Using Single Accelerometer Placed at Wrist or Ankle.Med Sci Sports Exerc. 2017 Apr;49(4):801-812. doi: 10.1249/MSS.0000000000001144. Med Sci Sports Exerc. 2017. PMID: 27820724 Free PMC article.
-
Household chaos and sleep-disturbing behavior of family members: results of a pilot study of African American early adolescents.Sleep Health. 2017 Apr;3(2):84-89. doi: 10.1016/j.sleh.2016.12.006. Epub 2017 Jan 22. Sleep Health. 2017. PMID: 28346162 Free PMC article.
-
Innovations in the Use of Interactive Technology to Support Weight Management.Curr Obes Rep. 2015 Dec;4(4):510-9. doi: 10.1007/s13679-015-0183-6. Curr Obes Rep. 2015. PMID: 26364308 Free PMC article. Review.
References
-
- Actigraph. (2010, October 12). Actigraph Activity Monitor Devices. Available: http://www.theactigraph.com
-
- Bao L and Intille SS, “Activity recognition from user-annotated acceleration data,” in Proc. of PERVASIVE. vol. LNCS 3001, Ferscha A and Mattern F, Eds., ed Berlin: Springer-Verlag, 2004, pp. 1–17.
-
- Lukowicz P, Ward JA, Junker H, Stager M, Troster G, Atrash A, and Starner T, “Recognizing workshop activity using body worn microphone and accelerometers,” in Proceedings of the International Conference in Pervasive Computing. vol. LNCS 3001, Ferscha A and Mattern F, Eds., ed, 2004, pp. 18–32.
-
- Zhang K, Werner P, Sun M, Pi-Sunyer FX, and Boozer CN, “Measurement of human daily physical activity,” Obesity Research, vol. 11, pp. 33–40, January 2003. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources