Automatic screening of age-related macular degeneration and retinal abnormalities
- PMID: 22255207
- DOI: 10.1109/IEMBS.2011.6090984
Automatic screening of age-related macular degeneration and retinal abnormalities
Abstract
We describe a novel approach for screening retinal imagery to detect evidence of abnormalities. In this paper, we focus our efforts on age-related macular degeneration (AMD), a pathology that may often go undetected in the early or intermediate stages, and can lead to a neovascular form often resulting in blindness, if untreated. Our strategy for retinal anomaly detection is to employ a single class classifier applied to fundus imagery. We use a multiresolution locally-adaptive scheme that identifies both normal and anomalous regions within the retina. We do this by using a hybrid parametric/non-parametric characterization of the support of the probability distribution of normal retinal tissue in color and intensity feature space. We apply this approach to screen for evidence of AMD on a dataset of 66 healthy and pathological cases and found a detection sensitivity and specificity of 95% and 96%.
Similar articles
-
Towards automatic detection of age-related macular degeneration in retinal fundus images.Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4100-3. doi: 10.1109/IEMBS.2010.5627289. Annu Int Conf IEEE Eng Med Biol Soc. 2010. PMID: 21096627
-
Macular dystrophies mimicking age-related macular degeneration.Prog Retin Eye Res. 2014 Mar;39:23-57. doi: 10.1016/j.preteyeres.2013.11.001. Epub 2013 Nov 28. Prog Retin Eye Res. 2014. PMID: 24291520 Review.
-
Fully automated detection of retinal disorders by image-based deep learning.Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4. Graefes Arch Clin Exp Ophthalmol. 2019. PMID: 30610422
-
Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images.Comput Biol Med. 2014 Oct;53:55-64. doi: 10.1016/j.compbiomed.2014.07.015. Epub 2014 Jul 30. Comput Biol Med. 2014. PMID: 25127409
-
[New examination methods for macular disorders--application of diagnosis and treatment].Nippon Ganka Gakkai Zasshi. 2000 Dec;104(12):899-942. Nippon Ganka Gakkai Zasshi. 2000. PMID: 11193944 Review. Japanese.
Cited by
-
Artificial intelligence for the detection of age-related macular degeneration in color fundus photographs: A systematic review and meta-analysis.EClinicalMedicine. 2021 May 8;35:100875. doi: 10.1016/j.eclinm.2021.100875. eCollection 2021 May. EClinicalMedicine. 2021. PMID: 34027334 Free PMC article.
-
Artificial intelligence for diagnosing exudative age-related macular degeneration.Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2. Cochrane Database Syst Rev. 2024. PMID: 39417312
-
Automated segmentation of geographic atrophy of the retinal epithelium via random forests in AREDS color fundus images.Comput Biol Med. 2015 Oct 1;65:124-36. doi: 10.1016/j.compbiomed.2015.06.018. Epub 2015 Jul 9. Comput Biol Med. 2015. PMID: 26318113 Free PMC article.
-
Detecting Anomalies in Retinal Diseases Using Generative, Discriminative, and Self-supervised Deep Learning.JAMA Ophthalmol. 2022 Feb 1;140(2):185-189. doi: 10.1001/jamaophthalmol.2021.5557. JAMA Ophthalmol. 2022. PMID: 34967890 Free PMC article.
-
Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods.PLoS One. 2017 Aug 30;12(8):e0184059. doi: 10.1371/journal.pone.0184059. eCollection 2017. PLoS One. 2017. PMID: 28854220 Free PMC article.
MeSH terms
LinkOut - more resources
Medical