A special purpose embedded system for neural machine interface for artificial legs
- PMID: 22255511
- PMCID: PMC3676650
- DOI: 10.1109/IEMBS.2011.6091288
A special purpose embedded system for neural machine interface for artificial legs
Abstract
This paper presents a design and implementation of a neural-machine interface (NMI) for artificial legs that can decode amputee's intended movement in real time. The newly designed NMI integrates an FPGA chip for fast processing and a microcontroller unit (MCU) with multiple on-chip analog-to-digital converters (ADCs) for real-time data sampling. The resulting embedded system is able to sample in real time 12 EMG signals and 6 mechanical signals and execute a special complex phase-dependent classifier for accurate recognition of the user's intended locomotion modes. The implementation and evaluation are based on Altera's Stratix III 3S150 FPGA device coupled with Freescale's MPC5566 MCU. The experimental results for classifying three locomotion modes (level-ground walking, stairs ascent, and stairs descent) based on data collected from an able-bodied human subject have shown acceptable performance for real-time controlling of artificial legs.
Figures





Similar articles
-
Promise of a low power mobile CPU based embedded system in artificial leg control.Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5250-3. doi: 10.1109/EMBC.2012.6347178. Annu Int Conf IEEE Eng Med Biol Soc. 2012. PMID: 23367113 Free PMC article.
-
Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses.IEEE Trans Neural Syst Rehabil Eng. 2017 Feb;25(2):161-170. doi: 10.1109/TNSRE.2016.2529581. Epub 2016 Feb 12. IEEE Trans Neural Syst Rehabil Eng. 2017. PMID: 26890910
-
Walking with WALK! A cooperative, patient-driven neuroprosthetic system.IEEE Eng Med Biol Mag. 2008 Jan-Feb;27(1):38-48. doi: 10.1109/MEMB.2007.911408. IEEE Eng Med Biol Mag. 2008. PMID: 18270049 No abstract available.
-
Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):379-86. doi: 10.1109/tnsre.2007.903919. IEEE Trans Neural Syst Rehabil Eng. 2007. PMID: 17894270
-
Application of EMG signals for controlling exoskeleton robots.Biomed Tech (Berl). 2006 Dec;51(5-6):314-9. doi: 10.1515/BMT.2006.063. Biomed Tech (Berl). 2006. PMID: 17155866 Review.
Cited by
-
Active lower limb prosthetics: a systematic review of design issues and solutions.Biomed Eng Online. 2016 Dec 19;15(Suppl 3):140. doi: 10.1186/s12938-016-0284-9. Biomed Eng Online. 2016. PMID: 28105948 Free PMC article.
-
Promise of a low power mobile CPU based embedded system in artificial leg control.Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5250-3. doi: 10.1109/EMBC.2012.6347178. Annu Int Conf IEEE Eng Med Biol Soc. 2012. PMID: 23367113 Free PMC article.
-
Electromyography Signals in Embedded Systems: A Review of Processing and Classification Techniques.Biomimetics (Basel). 2025 Mar 10;10(3):166. doi: 10.3390/biomimetics10030166. Biomimetics (Basel). 2025. PMID: 40136821 Free PMC article. Review.
References
-
- Parker PA, Scott RN. Myoelectric control of prostheses. Critical reviews in biomedical engineering. 1986:283–310. - PubMed
-
- Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng. 2003:848–854. - PubMed
-
- Zhang F, DiSanto W, Ren J, Dou Z, Yang Q, Huang H. A Novel CPS System for Evaluating a Neural-Machine Interface for Artificial Legs. presented at ICCPS’11; Chicago, USA. April 2011.
-
- Huang H, Sun Y, Yang Q, Zhang F, Zhang X, Liu Y, Ren J, Sierra F. Integrating neuromuscular and cyber systems for neural control of artificial legs. ICCPS’10; Stockholm, Sweden. April 2010.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical