Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Nov;31(5-6):195-9.

[Neuronal development of the hyperdopaminergic animal model]

[Article in Japanese]
Affiliations
  • PMID: 22256607
Review

[Neuronal development of the hyperdopaminergic animal model]

[Article in Japanese]
Yoshiyuki Kasahara et al. Nihon Shinkei Seishin Yakurigaku Zasshi. 2011 Nov.

Abstract

Dopamine transporter knockout (DAT KO) mice exhibited hyperdopaminergic tone in the nucleus accumbens and striatum, whereas they showed normal levels of extracellular dopamine in the prefrontal cortex. DAT KO mice showed numerous behavioral alterations that can be linked to abnormal dopaminergic function, including hyperlocomotion, deficits of prepulse inhibition (1PI) and impairment of working memory. PPI deficits were also shown in schizophrenic patients and hyperlocomotion was observed in AD/HD patients; therefore DAT KO mice had face validity for these psychiatric disorders. Impairment of neuronal development such as brain volume loss and decrease in spine density was reported especially in the prefrontal cortex of schizophrenia and AD/HD patients. We therefore investigated the neuronal development of DAT KO mice. Our results indicated that DAT KO mice had deficits of neuronal development in the prefrontal cortex similar to schizophrenia and AD/HD patients at least in part. These findings suggest that DAT KO mice are one of the useful models to investigate the impairment of neuronal development observed in psychiatric disorders including schizophrenia and AD/HD.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources