Human liver catechol-O-methyltransferase pharmacogenetics
- PMID: 2225698
- DOI: 10.1038/clpt.1990.166
Human liver catechol-O-methyltransferase pharmacogenetics
Abstract
Catechol-O-methyltransferase activity and thermal stability in the human red blood cell are controlled by a common genetic polymorphism. Approximately 25% to 30% of a randomly selected population sample is homozygous for the traits of low catechol-O-methyltransferase activity and thermolabile enzyme in the red blood cell. We tested the hypothesis that the catechol-O-methyltransferase genetic polymorphism might also control those same characteristics of the enzyme in an important human drug-metabolizing organ, the liver. Catechol-O-methyltransferase enzyme activity and thermal stability were measured in 99 hepatic biopsy samples obtained during clinically indicated surgery. The frequency distribution of heated/control ratios, a measure of enzyme thermal stability, was bimodal, with 28% of samples included in a subgroup with thermolabile enzyme. There were no sex-related differences in hepatic catechol-O-methyltransferase thermal stability. However, catechol-O-methyltransferase enzyme activity in hepatic tissue from male subjects was significantly higher than that in samples from female subjects: 61.3 +/- 20.2 units/mg protein (mean +/- SD; n = 50) versus 46.6 +/- 22.2 units/mg protein (n = 49; p = 0.0002). There was a significant correlation of hepatic catechol-O-methyltransferase activity and thermal stability in samples from both female (rs = 0.698; p = 0.0001) and male subjects (rs = 0.429; p = 0.002). Finally, when both red blood cell catechol-O-methyltransferase activity and thermal stability were measured in blood samples from 34 of these patients, there was a significant correlation between catechol-O-methyltransferase heated/control ratios and levels of enzyme activity in hepatic tissue and in red blood cell lysates. These findings indicate that the genetic polymorphism that controls catechol-O-methyltransferase activity level and thermal stability in red blood cells also controls those same properties of the enzyme in the human liver.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
