Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar 5;9(3):554-62.
doi: 10.1021/mp200622z. Epub 2012 Jan 31.

A new strategy to stabilize oxytocin in aqueous solutions: II. Suppression of cysteine-mediated intermolecular reactions by a combination of divalent metal ions and citrate

Affiliations
Free article

A new strategy to stabilize oxytocin in aqueous solutions: II. Suppression of cysteine-mediated intermolecular reactions by a combination of divalent metal ions and citrate

Christina Avanti et al. Mol Pharm. .
Free article

Abstract

A series of studies have been conducted to develop a heat-stable liquid oxytocin formulation. Oxytocin degradation products have been identified including citrate adducts formed in a formulation with citrate buffer. In a more recent study we have found that divalent metal salts in combination with citrate buffer strongly stabilize oxytocin in aqueous solutions (Avanti, C.; et al. AAPS J.2011, 13, 284-290). The aim of the present investigation was to identify various degradation products of oxytocin in citrate-buffered solution after thermal stress at a temperature of 70 °C for 5 days and the changes in degradation pattern in the presence of divalent metal ions. Degradation products of oxytocin in the citrate buffer formulation with and without divalent metal ions were analyzed using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). In the presence of divalent metal ions, almost all degradation products, in particular citrate adduct, tri- and tetrasulfides, and dimers, were greatly reduced in intensity. No significant difference in the stabilizing effect was found among the divalent metal ions Ca(2+), Mg(2+), and Zn(2+). The suppressed degradation products all involve the cysteine residues. We therefore postulate that cysteine-mediated intermolecular reactions are suppressed by complex formation of the divalent metal ion and citrate with oxytocin, thereby inhibiting the formation of citrate adducts and reactions of the cysteine thiol group in oxytocin.

PubMed Disclaimer

LinkOut - more resources