Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan 18:12:7.
doi: 10.1186/1471-2148-12-7.

Rates of evolution in stress-related genes are associated with habitat preference in two Cardamine lineages

Affiliations

Rates of evolution in stress-related genes are associated with habitat preference in two Cardamine lineages

Lino Ometto et al. BMC Evol Biol. .

Abstract

Background: Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation.

Results: High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens.

Conclusions: Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution and in the levels of selective pressure between the C. impatiens and C. resedifolia lineages. The within-species analyses also revealed evolutionary patterns associated with habitat preference of two Cardamine species. We conclude that the selective pressures associated with the habitats typical of C. resedifolia may have caused the rapid evolution of genes involved in cold response.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Levels of selective pressure in C. impatiens and C. resedifolia orthologous genes. Mean values of ω are reported for genes functionally characterized as cold responsive (CRG), and for genes annotated as involved in cold response (CGO), photosynthesis (PGO) and general stress responses (SGO). Text in bars denotes the number of genes; error bars denote the standard error of the mean. For each functional class, the mean residual values of the correlation between levels of selective pressure and A. thaliana gene length were compared to the mean estimated for the genes not in such functional class (identified by red dots) using a Wilcoxon test: * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.
Figure 2
Figure 2
Codon usage bias in C. impatiens and C. resedifolia orthologous genes. Mean values of the frequency of the optimal codon (Fop) are reported for genes functionally characterized as cold responsive genes (CRG), and for genes annotated as involved either in cold response (CGO), photosynthesis (PGO) and general stress responses (SGO). Text in bars denotes the number of genes; error bars denote the standard error of the mean. The mean values of each functional class were compared to the mean estimated for the genes not in that functional class (identified by red dots) using a Wilcoxon test: * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

Similar articles

Cited by

References

    1. Orr HA. The genetic theory of adaptation: a brief history. Nat Rev Genet. 2005;6:119–127. - PubMed
    1. Nachman MW, Hoekstra HE, D'Agostino SL. The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci USA. 2003;100:5268–5273. doi: 10.1073/pnas.0431157100. - DOI - PMC - PubMed
    1. Storz JF, Sabatino SJ, Hoffmann FG, Gering EJ, Moriyama H, Ferrand N, Monteiro B, Nachman MW. The molecular basis of high-altitude adaptation in deer mice. PLoS Genet. 2007;3:e45. doi: 10.1371/journal.pgen.0030045. - DOI - PMC - PubMed
    1. Zhen Y, Ungerer MC. Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana. Mol Biol Evol. 2008;25:2547–2555. doi: 10.1093/molbev/msn196. - DOI - PubMed
    1. Eckert AJ, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, Tearse BR, Krutovsky KV, Neale DB. Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas Fir (Pseudotsuga menziesii var. menziesii) Genetics. 2009;183:289–298. doi: 10.1534/genetics.109.103895. - DOI - PMC - PubMed

Publication types

LinkOut - more resources