Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan 15:88:152-9.
doi: 10.1016/j.talanta.2011.10.024. Epub 2011 Oct 25.

Selective detection of carbon dioxide using LaOCl-functionalized SnO₂ nanowires for air-quality monitoring

Affiliations

Selective detection of carbon dioxide using LaOCl-functionalized SnO₂ nanowires for air-quality monitoring

Do Dang Trung et al. Talanta. .

Abstract

In spite of the technical important of monitoring CO(2) gas by using a semiconductor-type gas sensor, a good sensitive and selective semiconductor CO(2) sensor has been not realized due to the rather unreactive toward CO(2) of conventional semiconductor metal oxides. In this work, a novel semiconductor CO(2) sensor was developed by functionalizing SnO(2) nanowires (NWs) with LaOCl, which was obtained by heat-treating the SnO(2) NWs coating with LaCl(3) aqueous solution at a temperature range of 500-700°C. The bare SnO(2) NWs and LaOCl-SnO(2) NWs sensors were characterized with CO(2) (250-4,000 ppm) and interference gases (100 ppm CO, 100 ppm H(2), 250 ppm LPG, 10 ppm NO(2) and 20 ppm NH(3)) at different operating temperatures for comparison. The SnO(2) NWs sensors functionalized with different concentrations of LaCl(3) solution were also examined to find optimized values. Comparative gas sensing results reveal that LaOCl-SnO(2) NWs sensors exhibit much higher response, shorter response-recovery and better selectivity in detecting CO(2) gas at 400°C operating temperature than the bare SnO(2) NWs sensors. This finding indicates that the functionalizing with LaOCl greatly improves the CO(2) response of SnO(2) NWs-based sensor, which is attributed to (i) p-n junction formation of LaOCl (p-type) and SnO(2) nanowires (n-type) that led to the extension of electron depletion and (ii) the favorable catalytic effect of LaOCl to CO(2) gas.

PubMed Disclaimer

Publication types

LinkOut - more resources