Three-dimensional folding and functional organization principles of the Drosophila genome
- PMID: 22265598
- DOI: 10.1016/j.cell.2012.01.010
Three-dimensional folding and functional organization principles of the Drosophila genome
Abstract
Chromosomes are the physical realization of genetic information and thus form the basis for its readout and propagation. Here we present a high-resolution chromosomal contact map derived from a modified genome-wide chromosome conformation capture approach applied to Drosophila embryonic nuclei. The data show that the entire genome is linearly partitioned into well-demarcated physical domains that overlap extensively with active and repressive epigenetic marks. Chromosomal contacts are hierarchically organized between domains. Global modeling of contact density and clustering of domains show that inactive domains are condensed and confined to their chromosomal territories, whereas active domains reach out of the territory to form remote intra- and interchromosomal contacts. Moreover, we systematically identify specific long-range intrachromosomal contacts between Polycomb-repressed domains. Together, these observations allow for quantitative prediction of the Drosophila chromosomal contact map, laying the foundation for detailed studies of chromosome structure and function in a genetically tractable system.
Copyright © 2012 Elsevier Inc. All rights reserved.
Similar articles
-
The three-dimensional genome organization of Drosophila melanogaster through data integration.Genome Biol. 2017 Jul 31;18(1):145. doi: 10.1186/s13059-017-1264-5. Genome Biol. 2017. PMID: 28760140 Free PMC article.
-
Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains.Mol Cell. 2012 Nov 9;48(3):471-84. doi: 10.1016/j.molcel.2012.08.031. Epub 2012 Oct 4. Mol Cell. 2012. PMID: 23041285 Free PMC article.
-
HP1 drives de novo 3D genome reorganization in early Drosophila embryos.Nature. 2021 May;593(7858):289-293. doi: 10.1038/s41586-021-03460-z. Epub 2021 Apr 14. Nature. 2021. PMID: 33854237 Free PMC article.
-
Multi-Scale Organization of the Drosophila melanogaster Genome.Genes (Basel). 2021 May 27;12(6):817. doi: 10.3390/genes12060817. Genes (Basel). 2021. PMID: 34071789 Free PMC article. Review.
-
Packaging the fly genome: domains and dynamics.Brief Funct Genomics. 2012 Sep;11(5):347-55. doi: 10.1093/bfgp/els020. Epub 2012 Sep 3. Brief Funct Genomics. 2012. PMID: 22945596 Review.
Cited by
-
Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.Semin Cell Dev Biol. 2016 Sep;57:40-50. doi: 10.1016/j.semcdb.2016.05.014. Epub 2016 May 22. Semin Cell Dev Biol. 2016. PMID: 27224938 Free PMC article. Review.
-
Pluripotency in 3D: genome organization in pluripotent cells.Curr Opin Cell Biol. 2012 Dec;24(6):793-801. doi: 10.1016/j.ceb.2012.11.001. Epub 2012 Nov 27. Curr Opin Cell Biol. 2012. PMID: 23199754 Free PMC article. Review.
-
CHANGE POINT ANALYSIS OF HISTONE MODIFICATIONS REVEALS EPIGENETIC BLOCKS LINKING TO PHYSICAL DOMAINS.Ann Appl Stat. 2016 Mar;10(1):506-526. doi: 10.1214/16-AOAS905. Epub 2016 Mar 25. Ann Appl Stat. 2016. PMID: 27231496 Free PMC article.
-
Functional sub-division of the Drosophila genome via chromatin looping: the emerging importance of CP190.Nucleus. 2013 Mar-Apr;4(2):115-22. doi: 10.4161/nucl.23389. Epub 2013 Jan 18. Nucleus. 2013. PMID: 23333867 Free PMC article. Review.
-
Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes.Nat Genet. 2020 Aug;52(8):840-848. doi: 10.1038/s41588-020-0647-9. Epub 2020 Jun 22. Nat Genet. 2020. PMID: 32572210 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases