Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun 6;106(3):337-44.
doi: 10.1016/j.physbeh.2012.01.007. Epub 2012 Jan 12.

Cognitive and neuronal systems underlying obesity

Affiliations
Review

Cognitive and neuronal systems underlying obesity

Scott E Kanoski. Physiol Behav. .

Abstract

Since the late 1970s obesity prevalence and per capita food intake in the USA have increased dramatically. Understanding the mechanisms underlying the hyperphagia that drives obesity requires focus on the cognitive processes and neuronal systems controlling feeding that occurs in the absence of metabolic need (i.e., "non-homeostatic" intake). Given that a portion of the increased caloric intake per capita since the late 1970s is attributed to increased meal and snack frequency, and given the increased pervasiveness of environmental cues associated with energy dense, yet nutritionally depleted foods, there's a need to examine the mechanisms through which food-related cues stimulate excessive energy intake. Here, learning and memory principles and their underlying neuronal substrates are discussed with regard to stimulus-driven food intake and excessive energy consumption. Particular focus is given to the hippocampus, a brain structure that utilizes interoceptive cues relevant to energy status (e.g., neurohormonal signals such as leptin) to modulate stimulus-driven food procurement and consumption. This type of hippocampal-dependent modulatory control of feeding behavior is compromised by consumption of foods common to Western diets, including saturated fats and simple carbohydrates. The development of more effective treatments for obesity will benefit from a more complete understanding of the complex interaction between dietary, environmental, cognitive, and neurophysiological mechanisms contributing to excessive food intake.

PubMed Disclaimer

References

    1. Ogden CL, Lamb MM, Carroll MD, Flegal KM. Obesity and socioeconomic status in adults: United States, 2005–2008. NCHS Data Brief. 2010:1–8. - PubMed
    1. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. Jama. 2010;303:235–241. - PubMed
    1. Berghofer A, Pischon T, Reinhold T, Apovian CM, Sharma AM, Willich SN. Obesity prevalence from a European perspective: a systematic review. BMC Public Health. 2008;8:200. - PMC - PubMed
    1. Kenny PJ. Reward mechanisms in obesity: new insights and future directions. Neuron. 2011;69:664–679. - PMC - PubMed
    1. Grill H, Skibicka K, Hayes M. Imaging obesity: fMRI, food reward, and feeding. Cell Metab. 2007;6:423–425. - PubMed