Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 Apr;213(1):89-98.
doi: 10.1530/JOE-11-0384. Epub 2012 Jan 19.

Prolactin177, prolactin188 and prolactin receptor 2 in the pituitary of the euryhaline tilapia, Oreochromis mossambicus, are differentially osmosensitive

Affiliations
Comparative Study

Prolactin177, prolactin188 and prolactin receptor 2 in the pituitary of the euryhaline tilapia, Oreochromis mossambicus, are differentially osmosensitive

Andre P Seale et al. J Endocrinol. 2012 Apr.

Abstract

Two forms of prolactin (Prl), prolactin 177 (Prl(177)) and prolactin 188 (Prl(188)), are produced in the rostral pars distalis (RPD) of the pituitary gland of euryhaline Mozambique tilapia, Oreochromis mossambicus. Consistent with their roles in fresh water (FW) osmoregulation, release of both Prls is rapidly stimulated by hyposmotic stimuli, both in vivo and in vitro. We examined the concurrent dynamics of Prl(177) and Prl(188) hormone release and mRNA expression from Prl cells in response to changes in environmental salinity in vivo and to changes in extracellular osmolality in vitro. In addition, mRNA levels of Prl receptors 1 and 2 (prlr1 and prlr2) and osmotic stress transcription factor 1 (ostf1) were measured. Following transfer from seawater (SW) to FW, plasma osmolality decreased, while plasma levels of Prl(177) and Prl(188) and RPD mRNA levels of prl(177) and prl(188) increased. The opposite pattern was observed when fish were transferred from FW to SW. Moreover, hyposmotically induced release of Prl(188) was greater in Prl cells isolated from FW-acclimated fish after 6 h of incubation, while the hyposmotically induced increase in prl(188) mRNA levels was only observed in SW-acclimated fish. In addition, prlr2 and ostf1 mRNA levels in Prl cells from both FW- and SW-acclimated fish increased in direct proportion to increases in extracellular osmolality both in vivo and in vitro. Taken together, these results indicate that the osmosensitivity of the tilapia RPD is modulated by environmental salinity with respect to hormone release and gene expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources