Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2012 Feb;122(2):486-9.
doi: 10.1172/JCI60941. Epub 2012 Jan 24.

Yes, even human brown fat is on fire!

Affiliations
Comment

Yes, even human brown fat is on fire!

Barbara Cannon et al. J Clin Invest. 2012 Feb.

Abstract

That adult humans possess brown fat is now accepted - but is the brown fat metabolically active? Does human brown fat actually combust fat to release heat? In this issue of the JCI, Ouellet et al. demonstrate that metabolism in brown fat really is increased when adult humans are exposed to cold. This boosts the possibility that calorie combustion in brown fat may be of significance for our metabolism and, correspondingly, that the absence of brown fat may increase our proneness to obesity - provided that brown fat becomes activated not only by cold but also through food-related stimuli.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Location and control of brown adipose tissue in adult humans.
Brown adipose tissue (BAT) is mainly found in depots localized below the clavicles and in the neck (but amount and shape may vary considerably). The activity of the tissue is regulated from the brain, based on the need for heat for body temperature control (as investigated here by Ouellet et al.; ref. 2) (thermoregulatory thermogenesis) or also, probably, on the need for metaboloregulatory thermogenesis. The heat results initially from combustion of stored lipid within the brown adipose tissue (Figure 2), but during prolonged thermogenesis, the components of ingested food are channeled to the tissue as a continuous supply of substrate.
Figure 2
Figure 2. Metabolism in brown adipose tissue.
In the cold, the sympathetic nerves from the brain that innervate brown adipose tissue (Figure 1) are active and release norepinephrine (NE), which stimulates the brown fat cells. This leads to activation of triglyceride breakdown and intracellular release of fatty acids (FA). The fatty acids enter the mitochondria and are degraded through β-oxidation to acetyl-CoA (AcCoA), which enters the citric acid cycle (CAC). Stimulation of the cells by norepinephrine also leads to activation of UCP1, and this allows for the oxidative processes to proceed rapidly, uncoupled from ATP production, i.e., heat is produced. The method used by Ouellet et al. (2) (green) demonstrates increased metabolic activity in brown adipose tissue. A bolus of positron-labeled (11C) acetate (*Ac) is injected into the blood and is converted within the cell to acetyl-CoA, which is incorporated into components of the citric acid cycle. When the citric acid cycle rapidly turns over, as happens in stimulated brown fat cells, the labeled carbons are released as CO2, and the positron label is thus lost from the tissue in proportion to the metabolic activity of the tissue.

Comment on

References

    1. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. doi: 10.1152/physrev.00015.2003. - DOI - PubMed
    1. Ouellet V, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122(2):545–552. - PMC - PubMed
    1. Barrington SF, Maisey MN. Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med. 1996;37(7):1127–1129. - PubMed
    1. Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging. 2002;29(10):1393–1398. doi: 10.1007/s00259-002-0902-6. - DOI - PubMed
    1. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293(2):E444–E452. doi: 10.1152/ajpendo.00691.2006. - DOI - PubMed