Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan;3(1):71-9.
doi: 10.1007/s13238-012-2007-8. Epub 2012 Jan 21.

Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions

Affiliations

Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions

Qi Gu et al. Protein Cell. 2012 Jan.

Abstract

The pluripotent state between human and mouse embryonic stem cells is different. Pluripotent state of human embryonic stem cells (ESCs) is believed to be primed and is similar with that of mouse epiblast stem cells (EpiSCs), which is different from the naïve state of mouse ESCs. Human ESCs could be converted into a naïve state through exogenous expression of defined transcription factors (Hanna et al., 2010). Here we report a rapid conversion of human ESCs to mouse ESC-like naïve states only by modifying the culture conditions. These converted human ESCs, which we called mhESCs (mouse ESC-like human ESCs), have normal karyotype, allow single cell passage, exhibit domed morphology like mouse ESCs and express some pluripotent markers similar with mouse ESCs. Thus the rapid conversion established a naïve pluripotency in human ESCs like mouse ESCs, and provided a new model to study the regulation of pluripotency.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Bao L., He L., Chen J., Wu Z., Liao J., Rao L., Ren J., Li H., Zhu H., Qian L., et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res. 2011;21:600–608. doi: 10.1038/cr.2011.6. - DOI - PMC - PubMed
    1. Bao S., Tang F., Li X., Hayashi K., Gillich A., Lao K., Surani M.A. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature. 2009;461:1292–1295. doi: 10.1038/nature08534. - DOI - PMC - PubMed
    1. Bendall S.C., Stewart M.H., Menendez P., George D., Vijayaragavan K., Werbowetski-Ogilvie T., Ramos-Mejia V., Rouleau A., Yang J., Bossé M., et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 2007;448:1015–1021. doi: 10.1038/nature06027. - DOI - PubMed
    1. Brons I.G., Smithers L.E., Trotter M.W., Rugg-Gunn P., Sun B., Chuva de Sousa Lopes S.M., Howlett S.K., Clarkson A., Ahrlund-Richter L., Pedersen R.A., et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448:191–195. doi: 10.1038/nature05950. - DOI - PubMed
    1. Buehr M., Meek S., Blair K., Yang J., Ure J., Silva J., McLay R., Hall J., Ying Q.L., Smith A. Capture of authentic embryonic stem cells from rat blastocysts. Cell. 2008;135:1287–1298. doi: 10.1016/j.cell.2008.12.007. - DOI - PubMed

Publication types