At the heart of computational modelling
- PMID: 22271869
- PMCID: PMC3382323
- DOI: 10.1113/jphysiol.2011.225045
At the heart of computational modelling
Abstract
The link between experimental data and biophysically based mathematical models is key to computational simulation meeting its potential to provide physiological insight. However, despite the importance of this link, scrutiny and analysis of the processes by which models are parameterised from data are currently lacking. While this situation is common to many areas of physiological modelling, to provide a concrete context, we use examples drawn from detailed models of cardiac electro-mechanics. Using this biophysically detailed cohort of models we highlight the specific issues of model parameterization and propose this process can be separated into three stages: observation, fitting and validation. Finally, future research challenges and directions in this area are discussed.
Figures



Similar articles
-
Clinical Diagnostic Biomarkers from the Personalization of Computational Models of Cardiac Physiology.Ann Biomed Eng. 2016 Jan;44(1):46-57. doi: 10.1007/s10439-015-1439-8. Epub 2015 Sep 23. Ann Biomed Eng. 2016. PMID: 26399986
-
SysBioMed report: advancing systems biology for medical applications.IET Syst Biol. 2009 May;3(3):131-6. doi: 10.1049/iet-syb.2009.0005. IET Syst Biol. 2009. PMID: 19449974
-
Mathematical modelling of cell migration.Essays Biochem. 2019 Oct 31;63(5):631-637. doi: 10.1042/EBC20190020. Essays Biochem. 2019. PMID: 31654055 Review.
-
Integrative biological modelling in silico.Novartis Found Symp. 2002;247:4-19; discussion 20-5, 84-90, 244-52. Novartis Found Symp. 2002. PMID: 12539946 Review.
-
Avoiding and identifying errors in health technology assessment models: qualitative study and methodological review.Health Technol Assess. 2010 May;14(25):iii-iv, ix-xii, 1-107. doi: 10.3310/hta14250. Health Technol Assess. 2010. PMID: 20501062 Review.
Cited by
-
Heart Valve Biomechanics and Underlying Mechanobiology.Compr Physiol. 2016 Sep 15;6(4):1743-1780. doi: 10.1002/cphy.c150048. Compr Physiol. 2016. PMID: 27783858 Free PMC article. Review.
-
Neural Network Approaches for Soft Biological Tissue and Organ Simulations.J Biomech Eng. 2022 Dec 1;144(12):121010. doi: 10.1115/1.4055835. J Biomech Eng. 2022. PMID: 36193891 Free PMC article. Review.
-
β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model.J Mol Cell Cardiol. 2015 Apr;81:162-75. doi: 10.1016/j.yjmcc.2015.02.014. Epub 2015 Feb 25. J Mol Cell Cardiol. 2015. PMID: 25724724 Free PMC article.
-
Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models.J R Soc Interface. 2017 Sep;14(134):20170340. doi: 10.1098/rsif.2017.0340. J R Soc Interface. 2017. PMID: 28931636 Free PMC article.
-
Human cardiac systems electrophysiology and arrhythmogenesis: iteration of experiment and computation.Europace. 2014 Nov;16 Suppl 4(Suppl 4):iv77-iv85. doi: 10.1093/europace/euu264. Europace. 2014. PMID: 25362174 Free PMC article. Review.
References
-
- Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dolle MET, et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006;441:1011–1014. - PubMed
-
- Blair TA, Roberds SL, Tamkun MM, Hartshorne RP. Functional characterization of RK5, a voltage-gated K+ channel cloned from the rat cardiovascular system. FEBS Lett. 1991;295:211–213. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources