Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;12(12):9057-82.
doi: 10.3390/ijms12129057. Epub 2011 Dec 7.

Molecular motor proteins and amyotrophic lateral sclerosis

Affiliations
Review

Molecular motor proteins and amyotrophic lateral sclerosis

Kai Y Soo et al. Int J Mol Sci. 2011.

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor neurons in the brain, brainstem and spinal cord, which is characterized by motor dysfunction, muscle dystrophy and progressive paralysis. Both inherited and sporadic forms of ALS share common pathological features, however, the initial trigger of neurodegeneration remains unknown. Motor neurons are uniquely targeted by ubiquitously expressed proteins in ALS but the reason for this selectively vulnerability is unclear. However motor neurons have unique characteristics such as very long axons, large cell bodies and high energetic metabolism, therefore placing high demands on cellular transport processes. Defects in cellular trafficking are now widely reported in ALS, including dysfunction to the molecular motors dynein and kinesin. Abnormalities to dynein in particular are linked to ALS, and defects in dynein-mediated axonal transport processes have been reported as one of the earliest pathologies in transgenic SOD1 mice. Furthermore, dynein is very highly expressed in neurons and neurons are particularly sensitive to dynein dysfunction. Hence, unravelling cellular transport processes mediated by molecular motor proteins may help shed light on motor neuron loss in ALS.

Keywords: amyotrophic lateral sclerosis; axonal transport; dynein; kinesins; myosin.

PubMed Disclaimer

References

    1. Rosen D.R. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;364:362. - PubMed
    1. Arai T., Hasegawa M., Akiyama H., Ikeda K., Nonaka T., Mori H., Mann D., Tsuchiya K., Yoshida M., Hashizume Y., et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 2006;351:602–611. - PubMed
    1. Kwiatkowski T.J., Jr, Bosco D.A., Leclerc A.L., Tamrazian E., Vanderburg C.R., Russ C., Davis A., Gilchrist J., Kasarskis E.J., Munsat T., et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323:1205–1208. - PubMed
    1. Rothstein J.D., Tsai G., Kuncl R.W., Clawson L., Cornblath D.R., Drachman D.B., Pestronk A., Stauch B.L., Coyle J.T. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 1990;28:18–25. - PubMed
    1. Van Den Bosch L., Robberecht W. Crosstalk between astrocytes and motor neurons: what is the message? Exp. Neurol. 2008;211:1–6. - PubMed

Publication types

MeSH terms

Substances