Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Sep;9(7):864-79.
doi: 10.2174/156720512802455386.

Roles of glycogen synthase kinase 3 in Alzheimer's disease

Affiliations
Review

Roles of glycogen synthase kinase 3 in Alzheimer's disease

Zhiyou Cai et al. Curr Alzheimer Res. 2012 Sep.

Abstract

Evidence from basic molecular biology has noted a critical role of GSK-3 in Alzheimer's disease (AD) pathogenesis such as beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangle (NFT), and neuronal degeneration. Aβ generation and deposition represents a key feature and is generated from APP by the sequential actions of two proteolytic enzymes: β-secretase and γ-secretase. GSK-3 could play a critical role in Aβ production via enhancing β-secretase activity. GSK-3 not only modulates APP processing in the process of Aβ generation, but regulates Aβ production by interfering with APP cleavage at the γ-secretase complex step since the APP and PS1 (a component of γ- secretase complex) are substrates of GSK-3 as well. GSK-3 may downregulate α-secretase through inhibiting PKC and ADAMs activity which are the substrates of GSK-3 contributing to Aβ production. Meanwhile, Aβ accumulation can induce GSK-3 activation through Aβ-mediated neuroinflammation and oxidative stress. Considering that active GSK-3 and some common GSK-3-shared factors induce the hyperphosphorylation of tau and neurofibrillary lesions, GSK-3 is a possible linking between amyloid plaques and NFT pathology. Additionally, GSK-3 could disrupt acetylcholine activity, and accelerate axon degeneration and failures in axonal transport, and lead to cognitive impairment in AD. Preclinical and clinical studies have supported that GSK-3β inhibitors could be useful in the treatment of AD. Consequently, an effective measure to inhibit GSK-3 activity may be a very attractive drug target in AD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms