Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb 28;6(2):1806-13.
doi: 10.1021/nn204866c. Epub 2012 Jan 27.

Discriminating nanoparticle dimers from higher order aggregates through wavelength-dependent SERS orientational imaging

Affiliations

Discriminating nanoparticle dimers from higher order aggregates through wavelength-dependent SERS orientational imaging

Sarah M Stranahan et al. ACS Nano. .

Abstract

Surface-enhanced Raman scattering (SERS) orientational imaging is a recently developed all-optical technique able to determine SERS-active silver nanoparticle dimer orientations by observing lobe positions in SERS emission patterns formed by the directional polarization of SERS along the longitudinal axis of the dimer. Here we extend this technique to discriminate nanoparticle dimers from higher order aggregates by observing the wavelength dependence of SERS emission patterns, which are unchanged in nanoparticle dimers but show differences in higher order aggregates involving two or more nanoparticle junctions. The ability of SERS orientational imaging to identify stacked nanoparticles in higher order aggregates is also demonstrated. The shape of the SERS emission patterns originating from trimers labeled with low and high concentrations of dye is investigated, showing that the emission pattern lobes become less defined as the dye concentration increases. Dynamic fluctuations in the SERS emission pattern lobes are observed in aggregates labeled with low dye concentrations, as molecules diffuse into regions of higher electromagnetic enhancement in multiple nanoparticle junctions.

PubMed Disclaimer

Publication types