Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 May;25(5):709-23.
doi: 10.1094/MPMI-11-11-0305.

Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant-virus interactions that lead to cell death

Affiliations
Free article
Comparative Study

Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant-virus interactions that lead to cell death

Remedios Pacheco et al. Mol Plant Microbe Interact. 2012 May.
Free article

Abstract

Hypersensitive response-related programmed cell death (PCD) has been extensively analyzed in various plant-virus interactions. However, little is known about the changes in gene expression and phytohormone levels associated with cell death caused by compatible viruses. The synergistic interaction of Potato virus X (PVX) with a number of Potyvirus spp. results in increased symptoms that lead to systemic necrosis (SN) in Nicotiana benthamiana. Here, we show that SN induced by a PVX recombinant virus expressing a potyviral helper component-proteinase (HC-Pro) gene is associated with PCD. We have also compared transcriptomic and hormonal changes that occur in response to a compatible synergistic virus interaction that leads to SN, a systemic incompatible interaction conferred by the Tobacco mosaic virus-resistance gene N, and a PCD response conditioned by depletion of proteasome function. Our analysis indicates that the SN response clusters with the incompatible response by the similarity of their overall gene expression profiles. However, the expression profiles of both defense-related genes and hormone-responsive genes, and also the relative accumulation of several hormones in response to SN, relate more closely to the response to depletion of proteasome function than to that elicited by the incompatible interaction. This suggests a potential contribution of proteasome dysfunction to the increased pathogenicity observed in PVX-Potyvirus mixed infections. Furthermore, silencing of coronatine insensitive 1, a gene involved in jasmonate perception, in N. benthamiana accelerated cell death induced by PVX expressing HC-Pro.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources