Cell-cell signaling interactions coordinate multiple cell behaviors that drive morphogenesis of the lateral line
- PMID: 22274715
- PMCID: PMC3277783
- DOI: 10.4161/cam.5.6.19113
Cell-cell signaling interactions coordinate multiple cell behaviors that drive morphogenesis of the lateral line
Abstract
The zebrafish sensory lateral line system has emerged as a powerful model for the mechanistic study of collective cell migration and morphogenesis. Recent work has uncovered the details of a signaling network involving the Wnt/β-catenin, Fgf and Delta-Notch pathways that patterns the migrating lateral line primordium into distinct regions. Cells within these regions exhibit different fundamental behaviors that together orchestrate normal lateral line morphogenesis. In this review, we summarize the signaling network that patterns the migrating lateral line primordium and describe how this patterning coordinates crucial morphogenic cell behaviors.
Figures





Similar articles
-
Cxcl12a induces snail1b expression to initiate collective migration and sequential Fgf-dependent neuromast formation in the zebrafish posterior lateral line primordium.Development. 2018 Jul 30;145(14):dev162453. doi: 10.1242/dev.162453. Development. 2018. PMID: 29945870 Free PMC article.
-
Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis.Dev Biol. 2011 Jan 15;349(2):470-82. doi: 10.1016/j.ydbio.2010.10.022. Epub 2010 Oct 23. Dev Biol. 2011. PMID: 20974120
-
Signaling pathways regulating zebrafish lateral line development.Curr Biol. 2009 May 12;19(9):R381-6. doi: 10.1016/j.cub.2009.03.057. Curr Biol. 2009. PMID: 19439264 Review.
-
Glypican4 modulates lateral line collective cell migration non cell-autonomously.Dev Biol. 2016 Nov 15;419(2):321-335. doi: 10.1016/j.ydbio.2016.09.002. Epub 2016 Sep 15. Dev Biol. 2016. PMID: 27640326
-
NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.Semin Cell Dev Biol. 2020 Apr;100:186-198. doi: 10.1016/j.semcdb.2019.12.015. Epub 2019 Dec 31. Semin Cell Dev Biol. 2020. PMID: 31901312 Review.
Cited by
-
Fluorescent activated cell sorting (FACS) combined with gene expression microarrays for transcription enrichment profiling of zebrafish lateral line cells.Methods. 2013 Aug 15;62(3):226-31. doi: 10.1016/j.ymeth.2013.06.005. Epub 2013 Jun 19. Methods. 2013. PMID: 23791746 Free PMC article.
-
CXCL12 and MYC control energy metabolism to support adaptive responses after kidney injury.Nat Commun. 2018 Sep 10;9(1):3660. doi: 10.1038/s41467-018-06094-4. Nat Commun. 2018. PMID: 30202007 Free PMC article.
-
Collective cell movement promotes synchronization of coupled genetic oscillators.Biophys J. 2014 Jul 15;107(2):514-526. doi: 10.1016/j.bpj.2014.06.011. Biophys J. 2014. PMID: 25028893 Free PMC article.
-
Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration.Cell Rep. 2015 Jan 20;10(3):414-428. doi: 10.1016/j.celrep.2014.12.043. Epub 2015 Jan 15. Cell Rep. 2015. PMID: 25600875 Free PMC article.
-
FGF-2 released from degenerating neurons exerts microglial-induced neuroprotection via FGFR3-ERK signaling pathway.J Neuroinflammation. 2014 Apr 16;11:76. doi: 10.1186/1742-2094-11-76. J Neuroinflammation. 2014. PMID: 24735639 Free PMC article.
References
-
- Stone LS. Experiments on the development of the cranial ganglia and the lateral line sense organs in Amblystoma punctatum. J Exp Zool. 1922;35:420–496. doi: 10.1002/jez.1400350403. - DOI
-
- Webb JF. Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol. 1989;33:205–222. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases