Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012:7:49-60.
doi: 10.2147/IJN.S26766. Epub 2011 Dec 30.

Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy

Affiliations
Review

Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy

Hsin-I Chang et al. Int J Nanomedicine. 2012.

Abstract

Research on liposome formulations has progressed from that on conventional vesicles to new generation liposomes, such as cationic liposomes, temperature sensitive liposomes, and virosomes, by modulating the formulation techniques and lipid composition. Many research papers focus on the correlation of blood circulation time and drug accumulation in target tissues with physicochemical properties of liposomal formulations, including particle size, membrane lamellarity, surface charge, permeability, encapsulation volume, shelf time, and release rate. This review is mainly to compare the therapeutic effect of current clinically approved liposome-based drugs with free drugs, and to also determine the clinical effect via liposomal variations in lipid composition. Furthermore, the major preclinical and clinical data related to the principal liposomal formulations are also summarized.

Keywords: PEGlated liposomes; cationic liposomes; temperature sensitive liposomes; therapeutic efficiency; virosomes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Chemical structures of lipids in liposome formulations. Abbreviations: DOTAP, 1,2-dioleoyl-3-trimethylammonium propane; DPPC, dipalmitoylphosphatidylcholine; DOPA, 1,2-Dioleoyl-sn-Glycero-3-Phosphate; MSPC, monostearoylphosphatidylcholine; DPPG, dipalmitoylphosphatidylglycerol; DSPC, distearoylphosphatidylcholine; HSPC, hydrogenated soy PC; DMPG, l-α-dimyristoylphosphatidylglycerol; DMPC, 1-α-dimyristoylphosphatidylcholine; DOPC, 1,2-Dioleoyl-sn-glycero-3-phosphocholine; DOPE, dioleoyl phosphatidylethanolamine; DSPG, distearoylphosphatidylglycerol; PEG2000-DSPE, polyethylene glycol 2000-distearoylphosphatidylethanolamine.

Similar articles

Cited by

References

    1. Otake K, Imura T, Sakai H, Abe M. Development of a new preparation method of liposomes using supercritical carbon dioxide. Langmuir. 2001;17(13):3898–3901.
    1. Uhumwangho MU, Okor RS. Current trends in the production and biomedical applications of liposomes: a review. Pak J Pharm Sci. 2005;4(1):9–21.
    1. Jiskoot W, Teerlink T, Beuvery EC, Crommelin DJ. Preparation of liposomes via detergent removal from mixed micelles by dilution. The effect of bilayer composition and process parameters on liposome characteristics. Pharm Weekbl Sci. 1986;8(5):259–265. - PubMed
    1. Deamer QW. Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci. 1978;308:250–258. - PubMed
    1. Szoka F, Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978;75(9):4194–4198. - PMC - PubMed

Publication types

MeSH terms