Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(1):e30132.
doi: 10.1371/journal.pone.0030132. Epub 2012 Jan 19.

Expression of the stress response oncoprotein LEDGF/p75 in human cancer: a study of 21 tumor types

Affiliations

Expression of the stress response oncoprotein LEDGF/p75 in human cancer: a study of 21 tumor types

Anamika Basu et al. PLoS One. 2012.

Abstract

Oxidative stress-modulated signaling pathways have been implicated in carcinogenesis and therapy resistance. The lens epithelium derived growth factor p75 (LEDGF/p75) is a transcription co-activator that promotes resistance to stress-induced cell death. This protein has been implicated in inflammatory and autoimmune conditions, HIV-AIDS, and cancer. Although LEDGF/p75 is emerging as a stress survival oncoprotein, there is scarce information on its expression in human tumors. The present study was performed to evaluate its expression in a comprehensive panel of human cancers. Transcript expression was examined in the Oncomine cancer gene microarray database and in a TissueScan Cancer Survey Panel quantitative polymerase chain reaction (Q-PCR) array. Protein expression was assessed by immunohistochemistry (IHC) in cancer tissue microarrays (TMAs) containing 1735 tissues representing single or replicate cores from 1220 individual cases (985 tumor and 235 normal tissues). A total of 21 major cancer types were analyzed. Analysis of LEDGF/p75 transcript expression in Oncomine datasets revealed significant upregulation (tumor vs. normal) in 15 out of 17 tumor types. The TissueScan Cancer Q-PCR array revealed significantly elevated LEDGF/p75 transcript expression in prostate, colon, thyroid, and breast cancers. IHC analysis of TMAs revealed significant increased levels of LEDGF/p75 protein in prostate, colon, thyroid, liver and uterine tumors, relative to corresponding normal tissues. Elevated transcript or protein expression of LEDGF/p75 was observed in several tumor types. These results further establish LEDGF/p75 as a cancer-related protein, and provide a rationale for ongoing studies aimed at understanding the clinical significance of its expression in specific human cancers.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Transcript expression of LEDGF/p75 in eight human cancer types determined by TissueScan Cancer Q-PCR analysis.
Data were analyzed using the ΔΔCt method with values normalized to β-actin levels. The y-axis represents the induction fold of the LEDGF/p75 mRNA level in eight cancer types (n = 9) compared to matching normal adjacent tissues (n = 3) in the array. Error bars displays the range of standard error. * P<0.05. P values were determined with Student's t-test.
Figure 2
Figure 2. Identification of LEDGF/p75 specific antibody by immunoblotting in PC-3 cells with transient LEDGF/p75 knockdown.
Cells were transfected with siLEDGF/p75 to induce transient knockdown of LEDGF/p75. PC-3 cells transfected with small interfering scrambled RNA duplex (siSD) served as corresponding control. Immunoblotting analysis tested the specific reactivity of all the antibodies against LEDGF/PSIP1. All the blot pairs (siSD and siLEDGF/p75) for each antibody were derived from the same blot.
Figure 3
Figure 3. Elevated immunohistochemical expression of LEDGF/p75 protein in five tumor types compared to corresponding normal tissues.
Tissue microarrays were stained with antibody against LEDGF/p75, and the individual cores were blindly scored using the following scale: 0 = no staining, 1 = low staining, 2 = moderate staining, 3 = strong staining. Scored tissues were pooled into two groups: low staining (scores 0 and 1, dark bars) and high staining (scores 2 and 3, light bars). The percentage of specimens in the two staining categories was plotted for tumor tissues compared to normal (including disease-free normal and normal adjacent) tissues. *P<0.05; **P<0.01. P values were determined with Fisher's exact test.
Figure 4
Figure 4. Immunohistochemical staining for LEDGF/p75 protein in selected human tumors.
A. Representative images of immunohistochemical staining (low intensity, scores 0–1; high intensity, scores 2–3) for LEDGF/p75 in prostate, colon, and thyroid tumors (Scale bar-40 µm; magnification = 200×). B. Representative images of LEDGF/p75 immunostaining of non-disease normal prostate and colon tissues, and in tumor tissues and their matched adjacent tissues (Scale bar-40 µm; magnification = 400×). TMAs were stained using LEDGF/p75 specific rabbit antibody Scripps-Ab5087, as indicated in Materials and Methods. Identical camera settings were used in the acquisition and processing of images for a particular tissue type.

Similar articles

Cited by

References

    1. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–1616. - PMC - PubMed
    1. Pani G, Galeotti T, Chiarugi P. Metastasis: cancer cell's escape from oxidative stress. Cancer Metastasis Rev. 2010;29:351–378. - PubMed
    1. Mena S, Ortega A, Estrela JM. Oxidative stress in environmental-induced carcinogenesis. Mutat Res. 2009;674:36–44. - PubMed
    1. Singh DP, Ohguro N, Kikuchi T, Sueno T, Reddy VN, et al. Lens epithelium-derived growth factor: effects on growth and survival of lens epithelial cells, keratinocytes, and fibroblasts. Biochem Biophys Res Commun. 2000;267:373–381. - PubMed
    1. Sharma P, Singh DP, Fatma N, Chylack LT, Jr, Shinohara T. Activation of LEDGF gene by thermal-and oxidative-stresses. Biochem Biophys Res Commun. 2000;276:1320–1324. - PubMed

Publication types

Substances