Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep-Oct;51(5):512-29.

[Low efficiency of repair of critical DNA damage induced by low doses of radiation]

[Article in Russian]
  • PMID: 22279764

[Low efficiency of repair of critical DNA damage induced by low doses of radiation]

[Article in Russian]
A I Gaziev. Radiats Biol Radioecol. 2011 Sep-Oct.

Abstract

This study provides an analysis of the development of cellular response to the critical DNA damage and the mechanisms for limiting the efficiency of repairing such damages induced by low doses of ionizing radiation exposure. Based on the data of many studies, one can conclude that the majority of damages occurring in the DNA of the cells after exposure to ionizing radiation significantly differ in their chemical nature from the endogenous ones. The most important characteristic of radiation-induced DNA damages is their complexity and clustering. Double strand breaks, interstrand crosslinks or destruction of the replication fork and formation of long single-stranded gaps in DNA are considered to be critical damages for the fate of cells. The occurrence of such lesions in DNA may be a key event in the etiology and the therapy of cancer. The appearance in the cells of the critical DNA damage induces a rapid development of a complex and ramified network of molecular and biochemical reactions which are called the cellular response to DNA damage. Induction of the cellular response to DNA damage involves the activation of the systems of cell cycle checkpoints, DNA repair, changes in the expression of many genes, reconstruction of the chromatin or apoptosis. However, the efficiency of repair of the complex DNA damage in cells after exposure to low doses of radiation remains at low levels. The development of the cell response to DNA damages after exposure to low doses of radiation does not reach the desired result due to a small amount of damage, with the progression of the phase cell cycle being ahead of the processes of DNA repair. This is primarily due to the failure of signalization to activate the checkpoint of the cell cycle for its arrest in the case of a small number of critical DNA lesions. In the absence of the arrest of the phase cell cycle progression, especially during the G2/M transition, the reparation mechanisms fail to completely restore DNA, and cells pass into mitosis with a damaged DNA. It is assumed that another reason for the low efficiency of DNA repair in the cells after exposure to low doses of radiation is the existence of a restricted access for the repair system components to the complex damages at the DNA sites of highly compacted chromatin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms