Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 Mar 1;116(8):2605-14.
doi: 10.1021/jp211768n. Epub 2012 Feb 14.

Origin of decrease in potency of darunavir and two related antiviral inhibitors against HIV-2 compared to HIV-1 protease

Affiliations
Comparative Study

Origin of decrease in potency of darunavir and two related antiviral inhibitors against HIV-2 compared to HIV-1 protease

Parimal Kar et al. J Phys Chem B. .

Abstract

Acquired immune deficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV) type 1 and 2 (HIV-1 and HIV-2). HIV-1 is observed worldwide while HIV-2 though prevalent in West Africa is persistently spreading to other parts of the world. An important target for AIDS treatment is the use of HIV protease (PR) inhibitors preventing the replication of the virus. In this work, the popular molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method has been used to investigate the effectiveness of the HIV-1 PR inhibitors darunavir, GRL-06579A, and GRL-98065 against HIV-2 and HIV-1 protease. The affinity of the inhibitors for both HIV-1 and HIV-2 PR decreases in the order GRL-06579A > darunavir > GRL-98065, in accordance with experimental data. On the other hand, our results show that all these inhibitors bind less strongly to HIV-2 than to HIV-1 protease, again in agreement with experimental findings. The decrease in binding affinity for HIV-2 relative to HIV-1 PR is found to arise from an increase in the energetic penalty from the desolvation of polar groups (DRV) or a decrease in the size of the electrostatic interactions between the inhibitor and the PR (GRL-06579A and GRL-98065). For GRL-98065, also a decrease in the magnitude of the van der Waals interactions contributes to the reduction in binding affinity. A detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of efficient inhibitors against HIV-2 protease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources