Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May;9(3):231-42.
doi: 10.2174/156720112800389098.

Drug delivery to the inner ear: strategies and their therapeutic implications for sensorineural hearing loss

Affiliations
Review

Drug delivery to the inner ear: strategies and their therapeutic implications for sensorineural hearing loss

Teresa Rivera et al. Curr Drug Deliv. 2012 May.

Abstract

Hearing aids or cochlear implants constitute almost exclusively the treatment options currently available to patients suffering from sensorineural hearing loss and related conditions, such as noise-induced hearing loss, ototoxicity or autoimmune inner ear disease. While some systemic treatments exist, they generally exert adverse secondary effects and their efficacy is hampered by the blood-cochlear barrier that limits drug access to the inner ear. Hence, the new therapies that are being developed for hearing loss focus on strategies for direct drug delivery to the inner ear. The passive and active methods for local delivery can be categorized into two general groups: intratympanic or intracochlear. The intratympanic approach is a non-invasive method that preserves hearing and takes advantage of the permeability of the round window to gain access to the cochlea. However, this technique is limited by not knowing the dose of the drug that reaches the cochlea, (a handicap which might be overcome by the use of tagged drugs). While direct access to the inner ear by intracochlear administration avoids this problem, this method requires surgery. Currently, laboratory animals are being used to explore which therapeutic approaches are best suited to address this problem. These include cochleostomy and the insertion of devices that pump drugs into the inner ear without inducing cochlear damage. In this article, we review the different techniques under evaluation in animal models of deafness, and their potential use for drug delivery and treatment of human inner ear diseases.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources