Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan 27;4(1):3.
doi: 10.1186/gm302.

Recycling side-effects into clinical markers for drug repositioning

Affiliations

Recycling side-effects into clinical markers for drug repositioning

Miquel Duran-Frigola et al. Genome Med. .

Abstract

Side-effects are the unintended consequence of therapeutic treatments, but they can also be seen as valuable read-outs of drug effects in humans; these effects are difficult to infer or predict from pre-clinical models. Indeed, some studies suggest that drugs with similar side-effect profiles may also share therapeutic properties through related mechanisms of action. A recent publication exploits this concept to systematically investigate new indications for already marketed drugs, and presents a strategy to get the most out of the tiny portion of chemicals that have proved to be effective and safe.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Bridging the levels of biological complexity. The left half of the scheme represents the association between drugs and their therapeutic effects measured with different assays. Captured biological complexity increases radially and, in principle, inner knowledge can be gained indirectly. Side-effects are on the outer level and constitute a signal of similar complexity to the therapeutic effect. Pre-clinical experiments such as disease-gene associations or gene-expression profiles provide biomolecular rationale for a disease, but the underlying mechanism of action (MoA) upon treatment can only be proposed as a complement. Finally, a structure-activity relationship (SAR) does not embrace biological understanding because the therapeutic outcome is ciphered within the molecular structure alone. All this information is used in the right half to guide drug repositioning, where candidates are screened correspondingly. Arrows crossing biological complexity levels imply functional inferences not necessarily supported by the assay design.

Similar articles

Cited by

References

    1. Giles FJ, O'Dwyer M, Swords R. Class effects of tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leukemia. 2009;23:1698–1707. doi: 10.1038/leu.2009.111. - DOI - PubMed
    1. Pujol A, Mosca R, Farres J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010;31:115–123. doi: 10.1016/j.tips.2009.11.006. - DOI - PubMed
    1. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4:682–690. doi: 10.1038/nchembio.118. - DOI - PubMed
    1. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10:507–519. doi: 10.1038/nrd3480. - DOI - PubMed
    1. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–1935. doi: 10.1126/science.1132939. - DOI - PubMed

LinkOut - more resources