Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep 1;84(1):257-65.
doi: 10.1016/j.ijrobp.2011.10.064. Epub 2012 Jan 26.

TAT-mediated delivery of Tousled protein to salivary glands protects against radiation-induced hypofunction

Affiliations

TAT-mediated delivery of Tousled protein to salivary glands protects against radiation-induced hypofunction

Gulshan Sunavala-Dossabhoy et al. Int J Radiat Oncol Biol Phys. .

Abstract

Purpose: Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect against IR-induced salivary hypofunction.

Methods: The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation.

Results: We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D₀ = 4.13 ± 1.0 Gy; α/β = 0 Gy) compared with cells transduced with the TAT peptide (D₀ = 4.91 ± 1.0 Gy; α/β = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01).

Conclusions: The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources