Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar;93(3):364-73.
doi: 10.1016/j.antiviral.2012.01.004. Epub 2012 Jan 20.

RNA interference in vitro and in vivo using DsiRNA targeting the nucleocapsid N mRNA of human metapneumovirus

Affiliations

RNA interference in vitro and in vivo using DsiRNA targeting the nucleocapsid N mRNA of human metapneumovirus

Magali Darniot et al. Antiviral Res. 2012 Mar.

Abstract

Human metapneumovirus causes respiratory diseases with outcomes that can be severe in children, the immunocompromised, and the elderly. Synthetic small interfering RNAs (siRNAs) that silence targeted genes can be used as therapeutic agents. Currently, there is no specific therapy for hMPV. In this study, we designed Dicer-substrate siRNAs (DsiRNAs) that target metapneumovirus sequences on the mRNAs of the N, P, and L genes. In vitro, six DsiRNAs were shown to inhibit virus replication using cell proliferation tests. Of those, the DsiRNA that targets the most conserved mRNA sequence was then resynthesized in Evader™ format with heavy 2'-O-methyl modification of the guide strand. In a murine model, the prophylactic administration of this Evader™ DsiRNA was effective at partially inhibiting viral replication of hMPV (13×10(3) vs. 29×10(3)PFU/g of lung; p<0.01), which was not the case for the control, a mismatched DsiRNA. Inhibition was achieved without inducing cytokines or off-target effects. Moreover, the specificity of the siRNA mechanism of action was demonstrated in vitro and in vivo using 5'-RACE methodology. This in vivo approach of using a DsiRNA against hMPV is an important step in the development of synthetic siRNA as a therapeutic agent for this virus.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources