Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul;90(7):2092-108.
doi: 10.2527/jas.2011-3945. Epub 2012 Jan 27.

Effects of breed and harvest age on feed intake, growth, carcass traits, blood metabolites, and lipogenic gene expression in Boer and Kiko goats

Affiliations

Effects of breed and harvest age on feed intake, growth, carcass traits, blood metabolites, and lipogenic gene expression in Boer and Kiko goats

S Solaiman et al. J Anim Sci. 2012 Jul.

Abstract

The objectives of this experiment were to determine the effects of 2 different breeds (BR), Boer and Kiko, and 4 post-weaning harvest ages (HA; Days 0, 29, 56, and 85) on growth, carcass traits, blood metabolites, and lipogenic gene expression. Forty-eight goat (Capra hircus) kids (BW = 23.9 ± 1.50 kg; 3 to 4 mo) were used in a 2 × 4 factorial arrangement of treatments. Goats were stratified by BW within BR and randomly assigned to 4 HA. Kids were born between March 15 and April 7 to purebred does, and were represented by at least 3 purebred sires within each BR. They were fed a grain/hay (80:20) diet once per day. At designated HA, randomly pre-assigned goats (n = 6) from each BR were transported to the Meat Science Lab at Mississippi State University, Starkville, MS, and were harvested. There were no interactions (P > 0.10) between BR and HA. Boer tended (P = 0.08) to have greater initial BW, final BW (P = 0.05), and G/F ratio (P = 0.05). Although the 80:20 grain/hay diet was reinforced by adjusting DMI, both BR had similar total DMI, Boer kept that ratio, while Kiko consumed more (P = 0.001) hay (70:30, grain/hay) and had more (P = 0.001) DMI when expressed as g/kg BW. Boer tended to have greater transportation shrink (P = 0.07), HCW (P = 0.08), and cold carcass weights (CCW; P = 0.08), with greater (P = 0.001) carcass fat. No differences (P > 0.10) were observed in carcass shrink, dressing percentage, 12th rib fat thickness, and LM area between the 2 BR. When expressed as percentage empty BW, carcass bone was similar (P = 0.25), whereas muscle percentage (P = 0.02) was greater for Kiko and fat percentage was greater (P = 0.001) for Boer. Fat as a percentage of CCW remained relatively similar (P > 0.10) for both BR for the 2nd and 3rd HA. Differences were more evident (P = 0.01) at the 4th HA. Boer reached targeted harvest weight (29 kg) at the 3rd HA, while fat deposition continued (P = 0.01) during the 4th HA. Breed had no effect (P > 0.10) on meat color (L*, a*, b*) but HA affected (P = 0.001) all color values. Boer had similar 3-hydroxyl-3-methylglutaryl-CoA synthase mRNA abundance, but was greater (P < 0.03) in acetyl CoA carboxylase compared with Kiko. There was no difference (P = 0.52) in total serum fatty acids (FA, mg/mL) between the 2 BR. As animals aged, their total serum FA increased (P < 0.05) and changed to an undesirable profile. Kiko had a greater (P = 0.02) percentage of muscle and less (P = 0.001) fat in the carcass. We concluded that different BR might need different harvest endpoints and feed input according to consumer acceptability.

PubMed Disclaimer

Publication types

LinkOut - more resources