Analysis of the Erwinia chrysanthemi arb genes, which mediate metabolism of aromatic beta-glucosides
- PMID: 2228958
- PMCID: PMC526808
- DOI: 10.1128/jb.172.11.6261-6267.1990
Analysis of the Erwinia chrysanthemi arb genes, which mediate metabolism of aromatic beta-glucosides
Abstract
Erwinia chrysanthemi is one of the few members of the family Enterobacteriaceae that is capable of metabolizing most of the naturally occurring beta-glucosides. We previously isolated the clb genes, which allow the use of the disaccharide cellobiose as well as the aromatic beta-glucosides arbutin and salicin. We report here the isolation of the arb genes, which permit fermentation of the aromatic beta-glucosides only. Establishment of a functional Arb system in Escherichia coli depended on the presence of the phosphotransferase system and on the activation by the cyclic AMP-cyclic AMP receptor protein complex. Strains carrying mini-Mu-induced LacZ fusions to the arb genes were used to analyze arb genes organization and function. Three arb genes (arbG, arbF, and arbB) were identified and organized in this order. Genetic and structural evidence allowed us to assign a phospho-beta-glucosidase and a permease activity to the ArbB and ArbF proteins, respectively. Several Lac+ arb-lacZ insertions were introduced into the E. chrysanthemi chromosome. Both ArbG- and ArbF- strains were unable to ferment the aromatic beta-glucosides, whereas ArbB- strains were impaired only in salicin fermentation. None of the mutations in the arb genes affected cellobiose metabolism. The expression of the arb genes was substrate inducible and required the ArbF permease and, possibly, the ArbG protein. Collectively, our results underline the resemblance between the naturally expressed E. chrysanthemi arbGFB and the cryptic E. coli bglGFB operons, yet the arbG gene product seemed unable to activate E. coli bgl operon expression.
Similar articles
-
Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans.J Bacteriol. 1992 Feb;174(3):765-77. doi: 10.1128/jb.174.3.765-777.1992. J Bacteriol. 1992. PMID: 1732212 Free PMC article.
-
Influence of gyrA mutation on expression of Erwinia chrysanthemi clb genes cloned in Escherichia coli.J Bacteriol. 1986 Apr;166(1):346-8. doi: 10.1128/jb.166.1.346-348.1986. J Bacteriol. 1986. PMID: 3007437 Free PMC article.
-
Cellobiose metabolism in Erwinia: genetic study.Mol Gen Genet. 1984;197(3):486-90. doi: 10.1007/BF00329947. Mol Gen Genet. 1984. PMID: 6396494
-
The beta-glucosides metabolism in Erwinia chrysanthemi: preliminary analysis and comparison to Escherichia coli systems.FEMS Microbiol Rev. 1989 Jun;5(1-2):143-7. doi: 10.1016/0168-6445(89)90018-1. FEMS Microbiol Rev. 1989. PMID: 2699245 Review. No abstract available.
-
Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.Braz J Microbiol. 2015 Mar 4;45(4):1139-44. doi: 10.1590/s1517-83822014000400003. eCollection 2014. Braz J Microbiol. 2015. PMID: 25763016 Free PMC article. Review.
Cited by
-
Fate of the H-NS-repressed bgl operon in evolution of Escherichia coli.PLoS Genet. 2009 Mar;5(3):e1000405. doi: 10.1371/journal.pgen.1000405. Epub 2009 Mar 6. PLoS Genet. 2009. PMID: 19266030 Free PMC article.
-
Genes encoding two different beta-glucosidases of Thermoanaerobacter brockii are clustered in a common operon.Appl Environ Microbiol. 1997 Oct;63(10):3902-10. doi: 10.1128/aem.63.10.3902-3910.1997. Appl Environ Microbiol. 1997. PMID: 9327554 Free PMC article.
-
Growth of Azospirillum irakense KBC1 on the aryl beta-glucoside salicin requires either salA or salB.J Bacteriol. 1999 May;181(10):3003-9. doi: 10.1128/JB.181.10.3003-3009.1999. J Bacteriol. 1999. PMID: 10321999 Free PMC article.
-
Transcriptional analysis of the bglP gene from Streptococcus mutans.BMC Microbiol. 2006 Apr 21;6:37. doi: 10.1186/1471-2180-6-37. BMC Microbiol. 2006. PMID: 16630357 Free PMC article.
-
The celA gene, encoding a glycosyl hydrolase family 3 beta-glucosidase in Azospirillum irakense, is required for optimal growth on cellobiosides.Appl Environ Microbiol. 2001 May;67(5):2380-3. doi: 10.1128/AEM.67.5.2380-2383.2001. Appl Environ Microbiol. 2001. PMID: 11319128 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials