Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov 5;265(31):19158-62.

Retinoylation of HL-60 proteins. Comparison to labeling by palmitic and myristic acids

Affiliations
  • PMID: 2229069
Free article

Retinoylation of HL-60 proteins. Comparison to labeling by palmitic and myristic acids

N Takahashi et al. J Biol Chem. .
Free article

Abstract

Recent studies suggest that a retinoic acid (RA) nuclear receptor or a retinoylated nuclear protein may be involved in the action of RA. We showed previously (Takahashi, N., and Breitman, T. R. (1989) J. Biol. Chem. 264, 5159-5163) that retinoylation involves the formation of a thioester bond and occurs on protein in newly formed cells and in pre-existing cells. In this study, we saw at least 14 retinoylated proteins in HL-60 cells. Greater than 90% of the retinoylation was associated with the nuclear protein described previously. This protein, partially purified from isolated nuclei, bound to DNA-cellulose and was eluted with NaCl. Retinoylation occurred in HL-60 cells exposed to cycloheximide. Thus, retinoylation resembled palmitoylation, both in the covalent bond and the exchangeable reaction involving preformed protein. These similarities prompted us to compare retinoylation with two other fatty acylations in growing HL-60 cells. We found that the major retinoylated protein was labeled by either radioactive palmitic acid or myristic acid. The extent of [3H]palmitic acid labeling of this protein was not reduced by growth in the presence of RA. The extent of retinoylation of this protein was not reduced by growth in the presence of increasing concentrations of palmitic acid. These results raise the possibility that the same protein is a substrate for retinoylation, palmitoylation, and myristoylation.

PubMed Disclaimer

LinkOut - more resources