Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;16(6):639-47.
doi: 10.1080/10255842.2011.629996. Epub 2012 Jan 31.

Finite element-based force/moment-driven simulation of orthodontic tooth movement

Affiliations

Finite element-based force/moment-driven simulation of orthodontic tooth movement

M Geiger. Comput Methods Biomech Biomed Engin. 2013.

Abstract

The objectives of this study were to develop a numerically controlled experimental set-up to predict the movement caused by the force systems of orthodontic devices and to experimentally verify this system. The presented experimental set-up incorporated an artificial tooth fixed via a 3D force/moment sensor to a parallel kinematics robot. An algorithm determining the initial movement of the tooth in its elastic embedding controlled the set-up. The initial tooth movement was described by constant compliances. The constants were obtained prior to the experiment in a parameterised finite element (FE) study on the basis of a validated FE model of a human molar. The long-term tooth movement was assembled by adding up a multiple of incremental steps of initial tooth movements. A pure translational movement of the tooth of about 8 mm resulted for a moment to force ratio of - 8.85 mm, corresponding to the distance between the bracket and the centre of resistance. The correct behaviour of this linear elastic model in its symmetry plane allows for simulating single tooth movement induced by orthodontic devices.

PubMed Disclaimer

Publication types

LinkOut - more resources