Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar 12;13(3):905-17.
doi: 10.1021/bm201821x. Epub 2012 Feb 28.

Delivery of dermatan sulfate from polyelectrolyte complex-containing alginate composite microspheres for tissue regeneration

Affiliations

Delivery of dermatan sulfate from polyelectrolyte complex-containing alginate composite microspheres for tissue regeneration

Yanhong Wen et al. Biomacromolecules. .

Abstract

Dermatan sulfate (DS) is a glycosaminoglycan (GAG) with a great potential as a new therapeutic agent in tissue engineering. The aim of the present study was to investigate the formation of polyelectrolyte complexes (PECs) between chitosan and dermatan sulfate (CS/DS) and delivery of DS from PEC-containing alginate/chitosan/dermatan sulfate (Alg/CS/DS) microspheres for application in tissue regeneration. The CS/DS complexes were initially formed at different conditions including varying CS/DS ratio (positive/negative charge ratio), buffer, and pH. The obtained CS/DS complexes exhibited stronger electrostatic interaction, smaller complex size, and more stable colloidal structure when chitosan was in large excess (CS/DS 3:1) and prepared at pH 3.5 as compared to pH 5 using acetate buffer. The CS/DS complexes were subsequently incorporated into an alginate matrix by spray drying to form Alg/CS/DS composite microspheres with a DS encapsulation efficiency of 90-95%. The excessive CS induced a higher level of sustained DS release into Tris buffer (pH 7.4) from the microspheres formulated at pH 3.5; however, the amount of CS did not have a significant effect on the release from the microspheres formulated at pH 5. Significant cell proliferation was stimulated by the DS released from the microspheres in vitro. The present results provide a promising drug delivery strategy using PECs for sustained release of DS from microspheres intended for site-specific drug delivery and ultimately for use in tissue engineering.

PubMed Disclaimer

Publication types

LinkOut - more resources