Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Sep;88(3):1385-91.
doi: 10.1121/1.399716.

Electrically evoked whole-nerve action potentials: data from human cochlear implant users

Affiliations

Electrically evoked whole-nerve action potentials: data from human cochlear implant users

C J Brown et al. J Acoust Soc Am. 1990 Sep.

Abstract

This study describes a method for recording the electrically evoked, whole-nerve action potential (EAP) in users of the Ineraid cochlear implant. The method is an adaptation of one originally used by Charlet de Sauvage et al. [J. Acoust. Soc. Am. 73, 615-627 (1983)] in guinea pigs. The response, recorded from 11 subjects, consists of a single negative peak that occurs with a latency of approximately 0.4 ms. EAP input/output functions are steeply sloping and monotonic. Response amplitudes ranging up to 160 micro V have been recorded. Slope of the EAP input/output function correlates modestly (approximately 0.6-0.69) with results of tests measuring word recognition skills. The refractory properties of the auditory nerve were also assessed. Differences across subjects were found in the rate of recovery from the refractory state. These findings imply that there may be difference across subjects in the accuracy with which rapid temporal cues can be coded at the level of the auditory nerve. Reasonably strong correlations (approximately 0.74-0.85) have been found between the magnitude of the slope of these recovery curves and performance on tests of word recognition.

PubMed Disclaimer

Publication types

MeSH terms