Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012;8(2):272-88.
doi: 10.7150/ijbs.2929. Epub 2012 Jan 21.

TGF-β and BMP signaling in osteoblast differentiation and bone formation

Affiliations
Review

TGF-β and BMP signaling in osteoblast differentiation and bone formation

Guiqian Chen et al. Int J Biol Sci. 2012.

Abstract

Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.

Keywords: BMP signaling; Bone; Osteoblasts; Runx2; Smad; TGF signaling.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interests: The authors have declared that no conflict of interest exists.

Figures

Figure 1
Figure 1
TGF-β signaling and negative regulation in bone formation. Canonical Smad-dependent TGF-β signaling first binds to receptor type II (R-II) and receptor type I (R-I), and then signaling transduces to their Smads. Activated Smads form a complex with Smad4 and then translocate into the nucleus where they interact with other transcription factors to trigger target gene expression. Smad7 disrupts the activated Smad2/3 to form a complex with Smad4. The non-Smad-dependent TAK1 signaling pathway also regulates bone formation. PTH binding activates PTH1R to stimulate several downstream effectors. PTH binding also drives internalization of PTH1R-TGFβRII complex, which attenuates both TGF-β and PTH signaling on bone development. Transcriptional factor cAMP response element binding protein (CREB) mediates PTH signaling in osteoblasts. P: phosphorylation; Ub: ubiquitination.
Figure 2
Figure 2
BMP signaling and negative regulation in bone formation. Smad-dependent-BMP signaling binds to receptor type II (R-II) and receptor type I (R-I) and then the signaling transduces to their Smads. Activated Smads form a complex with Smad4 and then translocate into the nucleus where they interact with other transcription factors to trigger target gene expression. Neogenin regulates BMP receptor association and Smad1/5/8 signaling. Activated Smads regulate expression of transcriptional factors and transcriptional coactivators important in osteoblasts (Dlx5, Runx2 and Osx). Smad6 binds type I BMP receptor and prevents Smad1/5/8 to be activated. Non-Smad-dependent TAK1 signaling pathway also regulates bone formation. The interplay between BMPs and Wnt signaling affects bone formation . BMPRIA signaling upregulates Sost expression primarily through Smad-dependent signaling, while it upregulates DKK1 through Smad-dependent and non-Smad-dependent signaling. Both Sost and DKK1 inhibit canonical Wnt signaling, leading to a decrease in bone mass. P: phosphorylation; Ub: ubiquitination.

References

    1. Soltanoff CS, Yang S, Chen W, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr. 2009;19:1–46. - PMC - PubMed
    1. Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci. 2007;12:3068–92. - PMC - PubMed
    1. Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009;19:71–88. - PMC - PubMed
    1. Wagner DO, Sieber C, Bhushan R, Borgermann JH, Graf D, Knaus P. BMPs: from bone to body morphogenetic proteins. Sci Signal. 2010;3:mr1. - PubMed
    1. Yi JJ, Barnes AP, Hand R, Polleux F, Ehlers MD. TGF-beta signaling specifies axons during brain development. Cell. 2010;142:144–57. - PMC - PubMed

Publication types

Substances