Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 26;116(29):8383-93.
doi: 10.1021/jp2114994. Epub 2012 Feb 22.

A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly

Affiliations

A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly

Scott P Carmichael et al. J Phys Chem B. .

Abstract

Peptide self-assembly plays a role in a number of diseases, in pharmaceutical degradation, and in emerging biomaterials. Here, we aim to develop an accurate molecular-scale picture of this process using a multiscale computational approach. Recently, Shell (Shell, M. S. J. Chem. Phys. 2008, 129, 144108-7) developed a coarse-graining methodology that is based on a thermodynamic quantity called the relative entropy, a measure of how different two molecular ensembles behave. By minimizing the relative entropy between a coarse-grained peptide system and a reference all-atom system, with respect to the coarse-grained model's force field parameters, an optimized coarse-grained model can be obtained. We have reformulated this methodology using a trajectory-reweighting and perturbation strategy that enables complex coarse-grained models with at least hundreds of parameters to be optimized efficiently. This new algorithm allows for complex peptide systems to be coarse-grained into much simpler models that nonetheless recapitulate many correct features of detailed all-atom ones. In particular, we present results for a polyalanine case study, with attention to both individual peptide folding and large-scale fibril assembly.

PubMed Disclaimer

Publication types

LinkOut - more resources