Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos
- PMID: 22301319
- PMCID: PMC4827163
- DOI: 10.1126/science.1212867
Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos
Abstract
The segregation of embryonic endomesoderm into separate endoderm and mesoderm fates is not well understood in deuterostomes. Using sea urchin embryos, we showed that Notch signaling initiates segregation of the endomesoderm precursor field by inhibiting expression of a key endoderm transcription factor in presumptive mesoderm. The regulatory circuit activated by this transcription factor subsequently maintains transcription of a canonical Wnt (cWnt) ligand only in endoderm precursors. This cWnt ligand reinforces the endoderm state, amplifying the distinction between emerging endoderm and mesoderm. Before gastrulation, Notch-dependent nuclear export of an essential β-catenin transcriptional coactivator from mesoderm renders it refractory to cWnt signals, insulating it against an endoderm fate. Thus, we report that endomesoderm segregation is a progressive process, requiring a succession of regulatory interactions between cWnt and Notch signaling.
Figures



Similar articles
-
Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo.Development. 2010 Jan;137(1):83-91. doi: 10.1242/dev.044149. Development. 2010. PMID: 20023163 Free PMC article.
-
LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo.Dev Biol. 2005 Mar 1;279(1):252-67. doi: 10.1016/j.ydbio.2004.12.023. Dev Biol. 2005. PMID: 15708573
-
Wnt6 activates endoderm in the sea urchin gene regulatory network.Development. 2011 Aug;138(15):3297-306. doi: 10.1242/dev.058792. Development. 2011. PMID: 21750039 Free PMC article.
-
Conditional specification of endomesoderm.Cells Dev. 2021 Sep;167:203716. doi: 10.1016/j.cdev.2021.203716. Epub 2021 Jul 7. Cells Dev. 2021. PMID: 34245941 Free PMC article. Review.
-
Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients.Semin Cell Dev Biol. 1999 Jun;10(3):327-34. doi: 10.1006/scdb.1999.0292. Semin Cell Dev Biol. 1999. PMID: 10441547 Review.
Cited by
-
Gastrulation in the sea urchin.Curr Top Dev Biol. 2020;136:195-218. doi: 10.1016/bs.ctdb.2019.08.004. Epub 2019 Oct 22. Curr Top Dev Biol. 2020. PMID: 31959288 Free PMC article. Review.
-
The impact of gene expression variation on the robustness and evolvability of a developmental gene regulatory network.PLoS Biol. 2013 Oct;11(10):e1001696. doi: 10.1371/journal.pbio.1001696. Epub 2013 Oct 29. PLoS Biol. 2013. PMID: 24204211 Free PMC article.
-
Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos.iScience. 2023 Dec 2;27(1):108616. doi: 10.1016/j.isci.2023.108616. eCollection 2024 Jan 19. iScience. 2023. PMID: 38179064 Free PMC article.
-
Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva.Evodevo. 2013 Nov 4;4(1):31. doi: 10.1186/2041-9139-4-31. Evodevo. 2013. PMID: 24180614 Free PMC article.
-
Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis.Development. 2015 Jan 1;142(1):207-17. doi: 10.1242/dev.113043. Development. 2015. PMID: 25516976 Free PMC article.
References
-
- Kimelman D, Griffin KJ. Curr. Opin. Genet. Dev. 2000;10:350. - PubMed
-
- Rodaway A, Patient R. Cell. 2001;105:169. - PubMed
-
- Kikuchi Y, et al. Dev Dyn. 2004;229:756. - PubMed
-
- Revinski DR, Paganelli AR, Carrasco AE, Lopez SL. Dev. Biol. 2010;339:477. - PubMed
-
- Sherwood DR, McClay DR. Development. 1997;124:3363. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous