Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;15(2):171-85.
doi: 10.1007/s10456-011-9249-6.

Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab

Affiliations

Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab

Nicholas Papadopoulos et al. Angiogenesis. 2012 Jun.

Abstract

Pharmacological inhibition of VEGF-A has proven to be effective in inhibiting angiogenesis and vascular leak associated with cancers and various eye diseases. However, little information is currently available on the binding kinetics and relative biological activity of various VEGF inhibitors. Therefore, we have evaluated the binding kinetics of two anti-VEGF antibodies, ranibizumab and bevacizumab, and VEGF Trap (also known as aflibercept), a novel type of soluble decoy receptor, with substantially higher affinity than conventional soluble VEGF receptors. VEGF Trap bound to all isoforms of human VEGF-A tested with subpicomolar affinity. Ranibizumab and bevacizumab also bound human VEGF-A, but with markedly lower affinity. The association rate for VEGF Trap binding to VEGF-A was orders of magnitude faster than that measured for bevacizumab and ranibizumab. Similarly, in cell-based bioassays, VEGF Trap inhibited the activation of VEGFR1 and VEGFR2, as well as VEGF-A induced calcium mobilization and migration in human endothelial cells more potently than ranibizumab or bevacizumab. Only VEGF Trap bound human PlGF and VEGF-B, and inhibited VEGFR1 activation and HUVEC migration induced by PlGF. These data differentiate VEGF Trap from ranibizumab and bevacizumab in terms of its markedly higher affinity for VEGF-A, as well as its ability to bind VEGF-B and PlGF.

Electronic supplementary material: The online version of this article (doi:10.1007/s10456-011-9249-6) contains supplementary material, which is available to authorized users.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The effects of VEGF Trap, ranibizumab and bevacizumab on luciferase activation induced by VEGF-A121, VEGF-A165, human PlGF-2 (hPlGF-2) or mouse PlGF-2 (mPLGF-2) in HEK293/VEGFR1 cells. a Dose response curves for VEGF-A121, VEGF-A165 and hPlGF-2 yielded EC50 values of 13, 17, and 29 pM, respectively. b Serial dilutions of VEGF Trap (open box), ranibizumab (triangle), or bevacizumab (closed circle) were added to HEK293/VEGFR1 cells along with 20 pM of VEGF-A121. c Serial dilutions of VEGF Trap (open box), ranibizumab (triangle), or bevacizumab (closed circle) were added to HEK293/VEGFR1 cells along with 20 pM of VEGF-A165. d Serial dilutions of VEGF Trap (open box), ranibizumab (triangle), or bevacizumab (closed circle) were added to HEK293/VEGFR1 cells along with 40 pM of human PlGF-2. e Dose response curve for mPlGF-2 yielded an EC50 value of 10 pM (f). Serial dilutions of VEGF Trap were added to HEK293/VEGFR1 cells along with 20 pM of mPlGF-2. The cells were incubated for 6 h and OneGlo luciferase substrate was then added to each well. The plates were read on a luminometer and the data were plotted using a four parameter curve fit with GraphPad Prism. Each point represents a replica of 3 wells at each concentration
Fig. 2
Fig. 2
The effects of VEGF Trap, ranibizumab and bevacizumab on luciferase activation induced by VEGF-A121 and VEGF-A165 in HEK293/VEGFR2 cells. a Dose response curves for VEGF-A121 and VEGF-A165 with EC50 values of 70 and 30 pM, respectively. PlGF-2 was not active in this assay. b Serial dilutions of VEGF Trap (open box), ranibizumab (triangle) or bevacizumab (closed circle) were added to HEK293/VEGFR2 cells along with 20 pM of VEGF-A121. c Serial dilutions of VEGF Trap (open box), ranibizumab (triangle) or bevacizumab (closed circle) were added to HEK293/VEGFR2 cells along with 20 pM of VEGF-A165. The cells were incubated for 6 h and OneGlo luciferase substrate was then added to each well. The plates were read on a luminometer and the data were plotted using a four parameter curve fit with GraphPad Prism. Each point represents a replica of 3 wells at each concentration
Fig. 3
Fig. 3
The effects of VEGF Trap, ranibizumab and bevacizumab on calcium mobilization induced byVEGF-A165 in HUVEC. a A dose–response curve generated using serial dilutions of VEGF-A165 (4.0 nM–0.023 pM) resulted in an EC50 value of 5 pM. b Serial dilutions of VEGF Trap (open box), ranibizumab (triangle) or bevacizumab (closed circle) were added to HUVEC along with 20 pM of VEGF-A165. The VEGF-A165 was preincubated with the inhibitors for 10 min at 25°C. The solution was added to HUVEC preloaded with fluo-4 and the fluorescence of the well was determined on a FLIPR instrument. The data were plotted using a four parameter curve fit with GraphPad Prism. Each point represents duplicate wells at each concentration
Fig. 4
Fig. 4
The effects of VEGF Trap, ranibizumab and bevacizumab on HUVEC migration. a HUVEC were placed in the upper compartment of the Boyden chamber and allowed to migrate towards basal media containing 0.1% fetal bovine serum with or without VEGF-A165 or VEGF-A165 mixed with four concentrations each of VEGF Trap (circles, solid line), ranibizumab (triangles, dotted line) or bevacizumab (squares, dashed line) ranging from 0.013 to 13 nM. The percentage of total migration (y-axis) was calculated as (F Drug − F Basal)/(F Total− F Basal) × 100; where F Total is fluorescence in the presence of VEGF-A165, F Basal is fluorescence in the absence of VEGF-A165, and F Drug is fluorescence in the presence of VEGF-A165 mixed with drug at a specific molar ratio (x-axis). b HUVEC migration was assessed in the absence and presence of human PLGF-2 (hPLGF-2) or mouse PLGF-2 (mPLGF-2) with and without a 100-fold molar excess of VEGF Trap (VGT), ranibizumab (RAN) or bevacizumab (BEV). Fold migration (y-axis) was calculated as the ratio F/F Basal; where F is the total fluorescence measured for the indicated condition (x-axis) and F Basal is the fluorescence in the absence of either hPLGF-2 or mPLGF-2. Statistical significance: *P < 0.05; **P < 0.01; ns, no significance. Values and error bars represent the average value and standard error of the mean from at least three independent experiments with each experiment containing four biological replicates per condition (total n = 12–16 per condition) for all conditions tested. AU arbitrary units

References

    1. Grothey A, Galanis E. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol. 2009;6:507–518. doi: 10.1038/nrclinonc.2009.110. - DOI - PubMed
    1. Bressler SB. Introduction: understanding the role of angiogenesis and antiangiogenic agents in age-related macular degeneration. Ophthalmology. 2009;116:S1–S7. doi: 10.1016/j.ophtha.2009.06.045. - DOI - PubMed
    1. Bressler NM. Age-related macular degeneration is the leading cause of blindness. JAMA. 2004;291:1900–1901. doi: 10.1001/jama.291.15.1900. - DOI - PubMed
    1. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug. 2007;6:273–286. doi: 10.1038/nrd2115. - DOI - PubMed
    1. Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 2005;15:102–111. doi: 10.1016/j.gde.2004.12.005. - DOI - PubMed

MeSH terms

Substances

LinkOut - more resources