Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul 1:2:37.
doi: 10.3389/fgene.2011.00037. eCollection 2011.

Replication of GWAS "Hits" by Race for Breast and Prostate Cancers in European Americans and African Americans

Affiliations

Replication of GWAS "Hits" by Race for Breast and Prostate Cancers in European Americans and African Americans

Jill S Barnholtz-Sloan et al. Front Genet. .

Abstract

In this study, we assessed association of genome-wide association studies (GWAS) "hits" by race with adjustment for potential population stratification (PS) in two large, diverse study populations; the Carolina Breast Cancer Study (CBCS; N total = 3693 individuals) and the University of Pennsylvania Study of Clinical Outcomes, Risk, and Ethnicity (SCORE; N total = 1135 individuals). In both study populations, 136 ancestry information markers and GWAS "hits" (CBCS: FGFR2, 8q24; SCORE: JAZF1, MSMB, 8q24) were genotyped. Principal component analysis was used to assess ancestral differences by race. Multivariable unconditional logistic regression was used to assess differences in cancer risk with and without adjustment for the first ancestral principal component (PC1) and for an interaction effect between PC1 and the GWAS "hit" (SNP) of interest. PC1 explained 53.7% of the variance for CBCS and 49.5% of the variance for SCORE. European Americans and African Americans were similar in their ancestral structure between CBCS and SCORE and cases and controls were well matched by ancestry. In the CBCS European Americans, 9/11 SNPs were significant after PC1 adjustment, but after adjustment for the PC1 by SNP interaction effect, only one SNP remained significant (rs1219648 in FGFR2); for CBCS African Americans, 6/11 SNPs were significant after PC1 adjustment and after adjustment for the PC1 by SNP interaction effect, all six SNPs remained significant and an additional SNP now became significant. In the SCORE European Americans, 0/9 SNPs were significant after PC1 adjustment and no changes were seen after additional adjustment for the PC1 by SNP interaction effect; for SCORE African Americans, 2/9 SNPs were significant after PC1 adjustment and after adjustment for the PC1 by SNP interaction effect, only one SNP remained significant (rs16901979 at 8q24). We show that genetic associations by race are modified by interaction between individual SNPs and PS.

Keywords: GWAS “hits”; ancestry; breast cancer; population stratification; prostate cancer.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Scatter plots of PC1 vs. PC2 for CBCS and SCORE.
Figure 2
Figure 2
Scatter plots of PC1 vs. PC2 for CBCS and SCORE by case–control status.

References

    1. Ahmed S., Thomas G., Ghoussaini M., Healey C. S., Humphreys M. K., Platte R., Morrison J., Maranian M., Pooley K. A., Luben R., Eccles D., Evans D. G., Fletcher O., Johnson N., Dos Santos Silva I., Peto J., Stratton M. R., Rahman N., Jacobs K., Prentice R., Anderson G. L., Rajkovic A., Curb J. D., Ziegler R. G., Berg C. D., Buys S. S., Mccarty C. A., Feigelson H. S., Calle E. E., Thun M. J., Diver W. R., Bojesen S., Nordestgaard B. G., Flyger H., Dork T., Schurmann P., Hillemanns P., Karstens J. H., Bogdanova N. V., Antonenkova N. N., Zalutsky I. V., Bermisheva M., Fedorova S., Khusnutdinova E., Search, Kang D., Yoo K. Y., Noh D. Y., Ahn S. H., Devilee P., Van Asperen C. J., Tollenaar R. A., Seynaeve C., Garcia-Closas M., Lissowska J., Brinton L., Peplonska B., Nevanlinna H., Heikkinen T., Aittomaki K., Blomqvist C., Hopper J. L., Southey M. C., Smith L., Spurdle A. B., Schmidt M. K., Broeks A., Van Hien R. R., Cornelissen S., Milne R. L., Ribas G., Gonzalez-Neira A., Benitez J., Schmutzler R. K., Burwinkel B., Bartram C. R., Meindl A., Brauch H., Justenhoven C., Hamann U., Consortium G., Chang-Claude J., Hein R., Wang-Gohrke S., Lindblom A., Margolin S., Mannermaa A., Kosma V. M., Kataja V., Olson J. E., Wang X., Fredericksen Z., Giles G. G., Severi G., Baglietto L., English D. R., Hankinson S. E., Cox D. G., Kraft P., Vatten L. J., Hveem K., Kumle M., Sigurdson A., Doody M., Bhatti P., Alexander B. H., Hooning M. J., van den Ouweland A. M., Oldenburg R. A., Schutte M., Hall P., Czene K., Liu J., Li Y., Cox A., Elliott G., Brock I., Reed M. W., Shen C. Y., Yu J. C., Hsu G. C., Chen S. T., Anton-Culver H., Ziogas A., Andrulis I. L., Knight J. A., kConFab, Australian Ovarian Cancer Study Group. Beesley J., Goode E. L., Couch F., Chenevix-Trench G., Hoover R. N., Ponder B. A., Hunter D. J., Pharoah P. D., Dunning A. M., Chanock S. J., Easton D. F. (2009). Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat. Genet. 41, 585–59010.1038/ng.354 - DOI - PMC - PubMed
    1. Al Olama A. A., Kote-Jarai Z., Giles G. G., Guy M., Morrison J., Severi G., Leongamornlert D. A., Tymrakiewicz M., Jhavar S., Saunders E., Hopper J. L., Southey M. C., Muir K. R., English D. R., Dearnaley D. P., Ardern-Jones A. T., Hall A. L., O’brien L. T., Wilkinson R. A., Sawyer E., Lophatananon A., Oncology, U. K. G. P. C. S. C. B. A. O. U. S. S. O., Cancer, U. K. P. T. F. Treatment Study C., Horwich A., Huddart R. A., Khoo V. S., Parker C. C., Woodhouse C. J., Thompson A., Christmas T., Ogden C., Cooper C., Donovan J. L., Hamdy F. C., Neal D. E., Eeles R. A., Easton D. F. (2009). Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat. Genet. 41, 1058–106010.1038/ng.452 - DOI - PubMed
    1. Amundadottir L. T., Sulem P., Gudmundsson J., Helgason A., Baker A., Agnarsson B. A., Sigurdsson A., Benediktsdottir K. R., Cazier J. B., Sainz J., Jakobsdottir M., Kostic J., Magnusdottir D. N., Ghosh S., Agnarsson K., Birgisdottir B., Le Roux L., Olafsdottir A., Blondal T., Andresdottir M., Gretarsdottir O. S., Bergthorsson J. T., Gudbjartsson D., Gylfason A., Thorleifsson G., Manolescu A., Kristjansson K., Geirsson G., Isaksson H., Douglas J., Johansson J. E., Balter K., Wiklund F., Montie J. E., Yu X., Suarez B. K., Ober C., Cooney K. A., Gronberg H., Catalona W. J., Einarsson G. V., Barkardottir R. B., Gulcher J. R., Kong A., Thorsteinsdottir U., Stefansson K. (2006). A common variant associated with prostate cancer in European and African populations. Nat. Genet. 38, 652–65810.1038/ng1808 - DOI - PubMed
    1. Barnholtz-Sloan J. S., Mcevoy B., Shriver M. D., Rebbeck T. R. (2008). Ancestry estimation and correction for population stratification in molecular epidemiologic association studies. Cancer Epidemiol. Biomarkers Prev. 17, 471–47710.1158/1055-9965.EPI-07-0491 - DOI - PubMed
    1. Barnholtz-Sloan J. S., Shetty P. B., Guan X., Nyante S. J., Luo J., Brennan D. J., Millikan R. C. (2010). FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women. Carcinogenesis 31, 1417–142310.1093/carcin/bgq128 - DOI - PMC - PubMed