Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul 5:2:41.
doi: 10.3389/fgene.2011.00041. eCollection 2011.

Pathway-Wide Association Study Implicates Multiple Sterol Transport and Metabolism Genes in HDL Cholesterol Regulation

Affiliations

Pathway-Wide Association Study Implicates Multiple Sterol Transport and Metabolism Genes in HDL Cholesterol Regulation

Kai Wang et al. Front Genet. .

Abstract

Pathway-based association methods have been proposed to be an effective approach in identifying disease genes, when single-marker association tests do not have sufficient power. The analysis of quantitative traits may be benefited from these approaches, by sampling from two extreme tails of the distribution. Here we tested a pathway association approach on a small genome-wide association study (GWAS) on 653 subjects with extremely high high-density lipoprotein cholesterol (HDL-C) levels and 784 subjects with low HDL-C levels. We identified 102 genes in the sterol transport and metabolism pathways that collectively associate with HDL-C levels, and replicated these association signals in an independent GWAS. Interestingly, the pathways include 18 genes implicated in previous GWAS on lipid traits, suggesting that genuine HDL-C genes are highly enriched in these pathways. Additionally, multiple biologically relevant loci in the pathways were not detected by previous GWAS, including genes implicated in previous candidate gene association studies (such as LEPR, APOA2, HDLBP, SOAT2), genes that cause Mendelian forms of lipid disorders (such as DHCR24), and genes expressing dyslipidemia phenotypes in knockout mice (such as SOAT1, PON1). Our study suggests that sampling from two extreme tails of a quantitative trait and examining genetic pathways may yield biological insights from smaller samples than are generally required using single-marker analysis in large-scale GWAS. Our results also implicate that functionally related genes work together to regulate complex quantitative traits, and that future large-scale studies may benefit from pathway-association approaches to identify novel pathways regulating HDL-C levels.

Keywords: GWAS; HDL-C; cholesterol; genetic association; lipid; pathway analysis; sterol metabolism; sterol transport.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Manhattan plot of the single-marker association analysis on the discovery cohort. Except CETP on 16p13.3, single-marker analysis failed to identify any locus reaching genome-wide significance (P < 5 × 10−]).

Similar articles

Cited by

References

    1. Abifadel M., Varret M., Rabes J. P., Allard D., Ouguerram K., Devillers M., Cruaud C., Benjannet S., Wickham L., Erlich D., Derré A., Villéger L., Farnier M., Beucler I., Bruckert E., Chambaz J., Chanu B., Lecerf J. M., Luc G., Moulin P., Weissenbach J., Prat A., Krempf M., Junien C., Seidah N. G., Boileau C. (2003). Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–15610.1038/ng1161 - DOI - PubMed
    1. Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry J. M., Davis A. P., Dolinski K., Dwight S. S., Eppig J. T., Harris M. A., Hill D. P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J. C., Richardson J. E., Ringwald M., Rubin G. M., Sherlock G. (2000). Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–2910.1038/75556 - DOI - PMC - PubMed
    1. Askland K., Read C., Moore J. (2009). Pathways-based analyses of whole-genome association study data in bipolar disorder reveal genes mediating ion channel activity and synaptic neurotransmission. Hum. Genet. 125, 63–7910.1007/s00439-008-0600-y - DOI - PubMed
    1. Aulchenko Y. S., Ripatti S., Lindqvist I., Boomsma D., Heid I. M., Pramstaller P. P., Penninx B. W., Janssens A. C., Wilson J. F., Spector T., Martin N. G., Pedersen N. L., Kyvik K. O., Kaprio J., Hofman A., Freimer N. B., Jarvelin M. R., Gyllensten U., Campbell H., Rudan I., Johansson A., Marroni F., Hayward C., Vitart V., Jonasson I., Pattaro C., Wright A., Hastie N., Pichler I., Hicks A. A., Falchi M., Willemsen G., Hottenga J. J., de Geus E. J., Montgomery G. W., Whitfield J., Magnusson P., Saharinen J., Perola M., Silander K., Isaacs A., Sijbrands E. J., Uitterlinden A. G., Witteman J. C., Oostra B. A., Elliott P., Ruokonen A., Sabatti C., Gieger C., Meitinger T., Kronenberg F., Döring A., Wichmann H. E., Smit J. H., McCarthy M. I., van Duijn C. M., Peltonen L., ENGAGE Consortium (2009). Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41, 47–5510.1038/ng.269 - DOI - PMC - PubMed
    1. Baranzini S. E., Galwey N. W., Wang J., Khankhanian P., Lindberg R., Pelletier D., Wu W., Uitdehaag B. M., Kappos L., GeneMSA Consortium. Polman C. H., Matthews P. M., Hauser S. L., Gibson R. A., Oksenberg J. R., Barnes M. R. (2009). Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum. Mol. Genet. 18, 2078–209010.1093/hmg/ddp120 - DOI - PMC - PubMed