PKCε promotes oncogenic functions of ATF2 in the nucleus while blocking its apoptotic function at mitochondria
- PMID: 22304920
- PMCID: PMC3615433
- DOI: 10.1016/j.cell.2012.01.016
PKCε promotes oncogenic functions of ATF2 in the nucleus while blocking its apoptotic function at mitochondria
Abstract
The transcription factor ATF2 elicits oncogenic activities in melanoma and tumor suppressor activities in nonmalignant skin cancer. Here, we identify that ATF2 tumor suppressor function is determined by its ability to localize at the mitochondria, where it alters membrane permeability following genotoxic stress. The ability of ATF2 to reach the mitochondria is determined by PKCε, which directs ATF2 nuclear localization. Genotoxic stress attenuates PKCε effect on ATF2; enables ATF2 nuclear export and localization at the mitochondria, where it perturbs the HK1-VDAC1 complex; increases mitochondrial permeability; and promotes apoptosis. Significantly, high levels of PKCε, as seen in melanoma cells, block ATF2 nuclear export and function at the mitochondria, thereby attenuating apoptosis following exposure to genotoxic stress. In melanoma tumor samples, high PKCε levels associate with poor prognosis. Overall, our findings provide the framework for understanding how subcellular localization enables ATF2 oncogenic or tumor suppressor functions.
Copyright © 2012 Elsevier Inc. All rights reserved.
Figures
References
-
- Abu-Hamad S, Arbel N, Calo D, Arzoine L, Israelson A, Keinan N, Ben-Romano R, Friedman O, Shoshan-Barmatz V. The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci. 2009;122:1906–1916. - PubMed
-
- Bae KM, Wang H, Jiang G, Chen MG, Lu L, Xiao L. Protein kinase C epsilon is overexpressed in primary human non-small cell lung cancers and functionally required for proliferation of non-small cell lung cancer cells in a p21/Cip1-dependent manner. Cancer Res. 2007;67:6053–6063. - PubMed
-
- Berger AJ, Kluger HM, Li N, Kielhorn E, Halaban R, Ronai Z, Rimm DL. Subcellular localization of activating transcription factor 2 in melanoma specimens predicts patient survival. Cancer Res. 2003;63:8103–8107. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous
