Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr 15;372(1):252-60.
doi: 10.1016/j.jcis.2012.01.007. Epub 2012 Jan 20.

Characterizing zeta potential of functional nanofibers in a microfluidic device

Affiliations

Characterizing zeta potential of functional nanofibers in a microfluidic device

Daehwan Cho et al. J Colloid Interface Sci. .

Abstract

The measurement of surface charge on nanofibers was achieved by characterizing zeta potential of the nanofibers via a newly developed device for streaming current measurement. Low flow rates were sufficient to generate detectable streaming currents in the absence of an externally applied voltage without damaging nanofiber samples. Zeta potential was calculated by using the Helmholtz-Smoluchowski equation and the measured streaming currents. Two acrylic plates were machined and assembled to form a microfluidic channel that is 150 μm high, 2.0mm wide, and 30 mm long. Two electrodes for the measurement of streaming currents were housed in the top plate. Two nanofibers of pure polyacrylonitrile (PAN) fibers and charged (TiO(2) incorporated) PAN fibers were prepared and characterized in the device. Monobasic sodium phosphate and dibasic sodium phosphate were used to prepare four different pH buffer solutions ranging from pH 5 to pH 8 in order to characterize the zeta potentials. The pure PAN nanofibers had negatively-charged surfaces regardless of pH. However, the zeta potentials of PAN/TiO(2) nanofibers changed from positive to negative at pH 6.5. The zeta potential measurements made on the nanofibers in this new microfluidic device matched with those of the powdered raw materials using a commercial Zetasizer.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources